Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Frank Isken is active.

Publication


Featured researches published by Frank Isken.


Journal of Clinical Investigation | 2003

Frataxin deficiency in pancreatic islets causes diabetes due to loss of beta cell mass

Michael Ristow; Hindrik Mulder; Doreen Pomplun; Tim J. Schulz; Katrin Müller-Schmehl; Anja Krause; Malin Fex; Hélène Puccio; Jörg Müller; Frank Isken; Joachim Spranger; Dirk Müller-Wieland; Mark A. Magnuson; Matthias Möhlig; Michel Koenig; Andreas F.H. Pfeiffer

Diabetes is caused by an absolute (type 1) or relative (type 2) deficiency of insulin-producing beta cells. We have disrupted expression of the mitochondrial protein frataxin selectively in pancreatic beta cells. Mice were born healthy but subsequently developed impaired glucose tolerance progressing to overt diabetes mellitus. These observations were explained by impairment of insulin secretion due to a loss of beta cell mass in knockout animals. This phenotype was preceded by elevated levels of reactive oxygen species in knockout islets, an increased frequency of apoptosis, and a decreased number of proliferating beta cells. Hence, disruption of the frataxin gene in pancreatic beta cells causes diabetes following cellular growth arrest and apoptosis, paralleled by an increase in reactive oxygen species in islets. These observations might provide insight into the deterioration of beta cell function observed in different subtypes of diabetes in humans.


Clinical Endocrinology | 2009

A high normal TSH is associated with the metabolic syndrome

Stephan Ruhla; Martin O. Weickert; Ayman M. Arafat; M Osterhoff; Frank Isken; Joachim Spranger; Christof Schöfl; Andreas F.H. Pfeiffer; Matthias Möhlig

Objective  Obesity and insulin resistance are key features of the metabolic syndrome. In euthyroidism, the relationships between TSH and insulin resistance or the metabolic syndrome are less clear. We investigated the associations between TSH and the features and prevalence of the metabolic syndrome in euthyroid German subjects.


Journal of Nutritional Biochemistry | 2010

Effects of long-term soluble vs. insoluble dietary fiber intake on high-fat diet-induced obesity in C57BL/6J mice

Frank Isken; Susanne Klaus; M Osterhoff; Andreas F.H. Pfeiffer; Martin O. Weickert

Although most of the proposed beneficial effects of fiber consumption have been attributed to viscous and gel-forming properties of soluble fiber, it is mainly insoluble cereal fiber and whole grains that are strongly associated with reduced diabetes risk in prospective cohort studies, indicating that other unknown mechanisms are likely to be involved. We performed a long-term study investigating potential protective effects of adding soluble guar fiber (10% w/w) vs. insoluble cereal fiber (10% w/w) to an isoenergetic and macronutrient matched high-fat diet in obesity-prone C57BL/6J mice. After 45 weeks, mice fed soluble vs. insoluble fiber showed both significantly increased body weight (41.8+/-3.0 vs. 33.6+/-1.5 g, P=.03) and elevated markers of insulin resistance. In mice fed soluble fiber, energy loss via the feces was significantly lower and colonic fermentation with production of short chain fatty acids (SCFA) was markedly increased. Gene expression analysis in white adipose tissue showed significantly increased levels of the fatty acid target G-protein coupled receptor-40 in soluble fiber-fed mice. Liver gene expression in the insoluble fiber group showed a pattern consistent with increased fatty acid oxidation. The present results show that soluble vs insoluble dietary fiber added to a high-fat, Western-style diet differently affected body weight and estimates of insulin sensitivity in obesity-prone mice. Soluble fiber intake with increased SCFA production significantly contributed to digested energy, thereby potentially outweighing the well known short-term beneficial effects of soluble fiber consumption.


The American Journal of Clinical Nutrition | 2011

Effects of supplemented isoenergetic diets differing in cereal fiber and protein content on insulin sensitivity in overweight humans

Martin O. Weickert; Michael Roden; Frank Isken; D Hoffmann; Peter Nowotny; M Osterhoff; Michael Blaut; Carl Alpert; Özlem Gögebakan; Christiane Bumke-Vogt; Friederike Mueller; Jürgen Machann; Thomas M. Barber; Klaus J. Petzke; Johannes Hierholzer; S Hornemann; Michael Kruse; Anne-Kathrin Illner; Angela Kohl; Christian von Loeffelholz; Ayman M. Arafat; Matthias Möhlig; Andreas F.H. Pfeiffer

BACKGROUND Despite their beneficial effects on weight loss and blood lipids, high-protein (HP) diets have been shown to increase insulin resistance and diabetes risk, whereas high-cereal-fiber (HCF) diets have shown the opposite effects on these outcomes. OBJECTIVE We compared the effects of isoenergetic HP and HCF diets and a diet with moderate increases in both cereal fibers and dietary protein (Mix diet) on insulin sensitivity, as measured by using euglycemic-hyperinsulinemic clamps with infusion of [6,6-(2)H(2)]glucose. DESIGN We randomly assigned 111 overweight adults with features of the metabolic syndrome to 1 of 4 two-phased, 18-wk isoenergetic diets by group-matching. Per 3-d food protocols, the percentages of energy derived from protein and carbohydrates and the intake of cereal fiber per day, respectively, were as follows-after 6 wk: 17%, 52%, and 14 g (control); 17%, 52%, and 43 g (HCF); 28%, 43%, and 13 g (HP); 23%, 44%, and 26 g (Mix); after 18 wk: 17%, 51%, and 15 g (control); 17%, 51%, and 41 g (HCF); 26%, 45%, and 14 g (HP); and 22%, 46%, and 26 g (Mix). Eighty-four participants completed the study successfully and were included in the final analyses. Adherence was supported by the provision of tailored dietary supplements twice daily in all groups. RESULTS Insulin sensitivity expressed as an M value was 25% higher after 6 wk of the HCF diet than after 6 wk of the HP diet (subgroup analysis: 4.61 ± 0.38 compared with 3.71 ± 0.36 mg · kg(-1) · min(-1), P = 0.008; treatment × time interaction: P = 0.005). Effects were attenuated after 18 wk (treatment × time interaction: P = 0.054), which was likely explained by lower adherence to the HP diet. HP intake was associated with a tendency to increased protein expression in adipose tissue of the translation initiation factor serine-kinase-6-1, which is known to mediate amino acid-induced insulin resistance. Biomarkers of protein intake indicated interference of cereal fibers with dietary protein absorption. CONCLUSION Greater changes in insulin sensitivity after intake of an isoenergetic HCF than after intake of an HP diet might help to explain the diverse effects of these diets on diabetes risk. This trial is registered at clinicaltrials.gov as NCT00579657.


American Journal of Physiology-endocrinology and Metabolism | 2010

Impairment of fat oxidation under high- vs. low-glycemic index diet occurs before the development of an obese phenotype

Frank Isken; Susanne Klaus; Klaus-Jürgen Petzke; Christoph Loddenkemper; Andreas F.H. Pfeiffer; Martin O. Weickert

Exposure to high vs. low glycemic index (GI) diets increases fat mass and insulin resistance in obesity-prone C57BL/6J mice. However, the longer-term effects and potentially involved mechanisms are largely unknown. We exposed four groups of male C57BL/6J mice (n = 10 per group) to long-term (20 wk) or short-term (6 wk) isoenergetic and macronutrient matched diets only differing in starch type and as such GI. Body composition, liver fat, molecular factors of lipid metabolism, and markers of insulin sensitivity and metabolic flexibility were investigated in all four groups of mice. Mice fed the high GI diet showed a rapid-onset (from week 5) marked increase in body fat mass and liver fat, a gene expression profile in liver consistent with elevated lipogenesis, and, after long-term exposure, significantly reduced glucose clearance following a glucose load. The long-term high-GI diet also led to a delayed switch to both carbohydrate and fat oxidation in the postprandial state, indicating reduced metabolic flexibility. In contrast, no difference in carbohydrate oxidation was observed after short-term high- vs. low-GI exposure. However, fatty acid oxidation was significantly blunted as early as 3 wk after beginning of the high-GI intervention, at a time where most measured phenotypic markers including body fat mass were comparable between groups. Thus long-term high-GI feeding resulted in an obese, insulin-resistant, and metabolically inflexible phenotype in obesity-prone C57BL/6J mice. Early onset and significantly impaired fatty acid oxidation preceded these changes, thereby indicating a potentially causal involvement.


European Journal of Endocrinology | 2010

Circulating vaspin is unrelated to insulin sensitivity in a cohort of nondiabetic humans

Christian von Loeffelholz; Matthias Möhlig; Ayman M. Arafat; Frank Isken; Joachim Spranger; Knut Mai; Harpal S. Randeva; Andreas F.H. Pfeiffer; Martin O. Weickert

OBJECTIVE To study the association of vaspin with glucose metabolism. DESIGN Cross-sectional and intervention study. SUBJECTS AND METHODS The association of serum vaspin with metabolic and anthropometric characteristics was investigated in 108 volunteers. Euglycemic-hyperinsulinemic clamps (EHC) were performed in 83 of the participants. Changes of circulating vaspin levels were additionally studied in a crossover study using 300 min EHC with lipid versus saline infusion (n=10). RESULTS Neither glucose tolerance status nor insulin sensitivity, both as measured using EHCs and using homeostasis model assessment for insulin resistance (HOMA-IR), was significantly associated with serum vaspin in the cross-sectional study. Furthermore, there was no effect of short-term lipid-induced insulin resistance due to a 300 min intravenous lipid challenge on circulating vaspin. However, circulating vaspin levels were significantly elevated in women using oral contraceptives (OC), both compared to women without OC intake (1.17+/-0.26 vs 0.52+/-0.09 ng/ml, P=0.02) and males (1.17+/-0.26 vs 0.29+/-0.04 ng/ml, P=0.01). After exclusion of OC using females and stratification according to body mass index (BMI), a significant sexual dimorphism in subjects with a BMI <25 kg/m(2) was observed (males 0.21+/-0.04 ng/ml versus females 0.70+/-0.16 ng/ml, P=0.009). CONCLUSION Our results support the existence of a sexual dimorphism regarding circulating vaspin. The lack of an association of serum vaspin with HOMA-IR and M value indicates, however, no major role for vaspin concerning insulin sensitivity in nondiabetic humans.


American Journal of Physiology-endocrinology and Metabolism | 2008

Deficiency of glucose-dependent insulinotropic polypeptide receptor prevents ovariectomy-induced obesity in mice

Frank Isken; Andreas F.H. Pfeiffer; Ruben Nogueiras; M Osterhoff; Michael Ristow; Bernard Thorens; Matthias H. Tschöp; Martin O. Weickert

Menopause and premature gonadal steroid deficiency are associated with increases in fat mass and body weight. Ovariectomized (OVX) mice also show reduced locomotor activity. Glucose-dependent-insulinotropic-polypeptide (GIP) is known to play an important role both in fat metabolism and locomotor activity. Therefore, we hypothesized that the effects of estrogen on the regulation of body weight, fat mass, and spontaneous physical activity could be mediated in part by GIP signaling. To test this hypothesis, C57BL/6 mice and GIP-receptor knockout mice (Gipr(-/-)) were exposed to OVX or sham operation (n = 10 per group). The effects on body composition, markers of insulin resistance, energy expenditure, locomotor activity, and expression of hypothalamic anorexigenic and orexigenic factors were investigated over 26 wk in all four groups of mice. OVX wild-type mice developed obesity, increased fat mass, and elevated markers of insulin resistance as expected. This was completely prevented in OVX Gipr(-/-) animals, even though their energy expenditure and spontaneous locomotor activity levels did not significantly differ from those of OVX wild-type mice. Cumulative food intake in OVX Gipr(-/-) animals was significantly reduced and associated with significantly lower hypothalamic mRNA expression of the orexigenic neuropeptide Y (NPY) but not of cocaine-amphetamine-related transcript (CART), melanocortin receptors (MCR-3 and MCR-4), or thyrotropin-releasing hormone (TRH). GIP receptors thus interact with estrogens in the hypothalamic regulation of food intake in mice, and their blockade may carry promising potential for the prevention of obesity in gonadal steroid deficiency.


Diabetes Care | 2013

Hepatic insulin clearance is closely related to metabolic syndrome components.

O Pivovarova; Wolfgang Bernigau; Thomas Bobbert; Frank Isken; Matthias Möhlig; Joachim Spranger; Martin O. Weickert; M Osterhoff; Andreas F.H. Pfeiffer; Natalia Rudovich

OBJECTIVE Insulin clearance is decreased in type 2 diabetes mellitus (T2DM) for unknown reasons. Subjects with metabolic syndrome are hyperinsulinemic and have an increased risk of T2DM. We aimed to investigate the relationship between hepatic insulin clearance (HIC) and different components of metabolic syndrome and tested the hypothesis that HIC may predict the risk of metabolic syndrome. RESEARCH DESIGN AND METHODS Individuals without diabetes from the Metabolic Syndrome Berlin Brandenburg (MeSyBePo) study (800 subjects with the baseline examination and 189 subjects from the MeSyBePo recall study) underwent an oral glucose tolerance test (OGTT) with assessment of insulin secretion (insulin secretion rate [ISR]) and insulin sensitivity. Two indices of HIC were calculated. RESULTS Both HIC indices showed lower values in subjects with metabolic syndrome (P < 0.001) at baseline. HIC indices correlate inversely with waist circumference, diastolic blood pressure, fasting glucose, triglycerides, and OGTT-derived insulin secretion index. During a mean follow-up of 5.1 ± 0.9 years, 47 individuals developed metabolic syndrome and 33 subjects progressed to impaired glucose metabolism. Both indices of HIC showed a trend of an association with increased risk of metabolic syndrome (HICC-peptide odds ratio 1.13 [95% CI 0.97–1.31], P = 0.12, and HICISR 1.38 [0.88–2.17], P = 0.16) and impaired glucose metabolism (HICC-peptide 1.12 [0.92–1.36], P = 0.26, and HICISR 1.31 [0.74–2.33] P = 0.36), although point estimates reached no statistical significance. CONCLUSIONS HIC was associated with different components of metabolic syndrome and markers of insulin secretion and insulin sensitivity. Decreased HIC may represent a novel pathophysiological mechanism of the metabolic syndrome, which may be used additionally for early identification of high-risk subjects.


Diabetes | 2012

Glucose-Dependent Insulinotropic Polypeptide Reduces Fat-Specific Expression and Activity of 11β-Hydroxysteroid Dehydrogenase Type 1 and Inhibits Release of Free Fatty Acids

Özlem Gögebakan; Janin Andres; Katrin Biedasek; Knut Mai; Peter Kühnen; Heiko Krude; Frank Isken; Natalia Rudovich; M Osterhoff; Ulrich Kintscher; Michael A. Nauck; Andreas F.H. Pfeiffer; Joachim Spranger

Glucose-dependent insulinotropic polypeptide (GIP) has been suggested to have direct effects on nonislet tissues. GIP also reportedly increased glucose uptake and inhibition of lipolysis in adipocytes after inhibition of the intracellular cortisone-cortisol shuttle 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1). We here analyzed whether GIP modifies lipid metabolism and further elucidated the relation between GIP, 11β-HSD1, and fatty acid metabolism. GIP reduced activity of 11β-HSD1 promoter constructs and the expression and activity of 11β-HSD1 in differentiated 3T3-L1 adipocytes in a time- and dose-dependent fashion. This was paralleled by a reduction of free fatty acid (FFA) release and a reduced expression of key enzymes regulating lipolysis in adipose tissue. Preinhibition of 11β-HSD1 completely abolished GIP-induced effects on FFA release. To investigate the acute effects of GIP in humans, a randomized clinical trial was performed. GIP lowered circulating FFAs compared with saline control and reduced expression and ex vivo activity of 11β-HSD1 and adipose triglyceride lipase expression in subcutaneous fat biopsies. Our data suggest that GIP reduces FFA release from adipose tissue by inhibition of lipolysis or by increased reesterification. This process appears to depend on a modification of 11β-HSD1 activity. In general, the presented data support that GIP has direct and insulin-independent effects on adipose tissue.


Nutrition Research | 2009

Increased interleukin-10 but unchanged insulin sensitivity after 4 weeks of (1, 3)(1, 6)-β-glycan consumption in overweight humans.

Angela Kohl; Özlem Gögebakan; Matthias Möhlig; M Osterhoff; Frank Isken; Andreas F.H. Pfeiffer; Martin O. Weickert

Obesity-induced insulin resistance has been suggested to be a systemic inflammatory condition with activation of the innate immune system. Animal studies indicate that certain dietary fibers such as (1,3)(1,6)-beta-D-glycans (BDG) have potent effects on immune activity such as increasing the antiinflammatory cytokine interleukin-10 (IL-10) and reducing the secretion of inflammatory factors. Therefore, we hypothesized that BDG consumption improves inflammatory markers and insulin sensitivity in overweight and obese subjects with moderately increased levels of C-reactive protein, indicating subclinical inflammation. We screened 180 overweight and obese subjects for moderately increased C-reactive protein levels on 2 or more occasions, in the absence of any signs of acute infection. Twelve of the subjects met all inclusion criteria and were investigated in a randomized, double-blind, placebo-controlled, crossover design for 2 x 4 weeks (washout > or =4 weeks). Subjects ingested capsules containing 3 x 0.5 g of highly purified BDG or 3 x 0.5 g of placebo (waxy maize starch) daily. Maintenance of the normal diet of the participants and the correct intake of the capsules were monitored, using 6 x 3-day food recording and counting of the provided capsules. Predefined outcome measures were BDG-induced changes in pro and antiinflammatory markers in circulating blood and gene expression in adipose tissue and peripheral insulin sensitivity expressed as M value. The BDG consumption for 4 weeks significantly increased both circulating levels and adipose tissue messenger RNA (mRNA) expression of the antiinflammatory cytokine IL-10 in overweight and obese humans. Insulin sensitivity as well as circulating levels and mRNA expression of proinflammatory cytokines were unaffected by BDG treatment. Increased IL-10 after BDG consumption might be a contributing factor to the known beneficial effects of dietary fiber intake.

Collaboration


Dive into the Frank Isken's collaboration.

Top Co-Authors

Avatar

Martin O. Weickert

University Hospitals Coventry and Warwickshire NHS Trust

View shared research outputs
Top Co-Authors

Avatar

M Osterhoff

Ruhr University Bochum

View shared research outputs
Top Co-Authors

Avatar

Michael Ristow

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge