Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Frank J. Dekker is active.

Publication


Featured researches published by Frank J. Dekker.


Nature Cell Biology | 2009

A functional screen implicates microRNA-138-dependent regulation of the depalmitoylation enzyme APT1 in dendritic spine morphogenesis

Gabriele Siegel; Gregor Obernosterer; Roberto Fiore; Martin Oehmen; Silvia Bicker; Mette Christensen; Sharof Khudayberdiev; Philipp J.F. Leuschner; Clara Jana-Lui Busch; Christina G. Kane; Katja Hübel; Frank J. Dekker; Christian Hedberg; Balamurugan Rengarajan; Carsten Drepper; Herbert Waldmann; Sakari Kauppinen; Michael E. Greenberg; Andreas Draguhn; Marc Rehmsmeier; Javier Martinez; Gerhard Schratt

The microRNA pathway has been implicated in the regulation of synaptic protein synthesis and ultimately in dendritic spine morphogenesis, a phenomenon associated with long-lasting forms of memory. However, the particular microRNAs (miRNAs) involved are largely unknown. Here we identify specific miRNAs that function at synapses to control dendritic spine structure by performing a functional screen. One of the identified miRNAs, miR-138, is highly enriched in the brain, localized within dendrites and negatively regulates the size of dendritic spines in rat hippocampal neurons. miR-138 controls the expression of acyl protein thioesterase 1 (APT1), an enzyme regulating the palmitoylation status of proteins that are known to function at the synapse, including the α13 subunits of G proteins (Gα13). RNA-interference-mediated knockdown of APT1 and the expression of membrane-localized Gα13 both suppress spine enlargement caused by inhibition of miR-138, suggesting that APT1-regulated depalmitoylation of Gα13 might be an important downstream event of miR-138 function. Our results uncover a previously unknown miRNA-dependent mechanism in neurons and demonstrate a previously unrecognized complexity of miRNA-dependent control of dendritic spine morphogenesis.


Drug Discovery Today | 2009

Histone acetyl transferases as emerging drug targets.

Frank J. Dekker; Hidde J. Haisma

Post-translational modifications, such as acetylation or phosphorylation, play a crucial role in the regulation of gene transcription in eukaryotes. Different subtypes of histone acetyl transferases (HATs) catalyze the acetylation of histones on specific lysine residues. A potential role of HATs in the pathology of cancer, asthma, COPD and viral infection has been described. This indicates that specific HAT inhibitors are potential tools for pharmacological research and might find therapeutic applications. This review focuses on the role of the HATs p300, CBP, PCAF and GCN5 in different diseases and the development of small-molecule inhibitors of these enzymes as potential drugs.


Nature Chemical Biology | 2010

Small-molecule inhibition of APT1 affects Ras localization and signaling

Frank J. Dekker; Oliver Rocks; Nachiket Vartak; Sascha Menninger; Christian Hedberg; Rengarajan Balamurugan; Stefan Wetzel; Steffen Renner; Marc Gerauer; Beate Schölermann; Marion Rusch; John W. Kramer; Daniel Rauh; Geoffrey W. Coates; Luc Brunsveld; Philippe I. H. Bastiaens; Herbert Waldmann

Cycles of depalmitoylation and repalmitoylation critically control the steady-state localization and function of various peripheral membrane proteins, such as Ras proto-oncogene products. Interference with acylation using small molecules is a strategy to modulate cellular localization--and thereby unregulated signaling--caused by palmitoylated Ras proteins. We present the knowledge-based development and characterization of a potent inhibitor of acyl protein thioesterase 1 (APT1), a bona fide depalmitoylating enzyme that is, so far, poorly characterized in cells. The inhibitor, palmostatin B, perturbs the cellular acylation cycle at the level of depalmitoylation and thereby causes a loss of the precise steady-state localization of palmitoylated Ras. As a consequence, palmostatin B induces partial phenotypic reversion in oncogenic HRasG12V-transformed fibroblasts. We identify APT1 as one of the thioesterases in the acylation cycle and show that this protein is a cellular target of the inhibitor.


Pharmacological Reviews | 2013

Exchange Protein Directly Activated by cAMP (epac): A Multidomain cAMP Mediator in the Regulation of Diverse Biological Functions

Martina Schmidt; Frank J. Dekker; Harm Maarsingh

Since the discovery nearly 60 years ago, cAMP is envisioned as one of the most universal and versatile second messengers. The tremendous feature of cAMP to tightly control highly diverse physiologic processes, including calcium homeostasis, metabolism, secretion, muscle contraction, cell fate, and gene transcription, is reflected by the award of five Nobel prizes. The discovery of Epac (exchange protein directly activated by cAMP) has ignited a new surge of cAMP-related research and has depicted novel cAMP properties independent of protein kinase A and cyclic nucleotide-gated channels. The multidomain architecture of Epac determines its activity state and allows cell-type specific protein-protein and protein-lipid interactions that control fine-tuning of pivotal biologic responses through the “old” second messenger cAMP. Compartmentalization of cAMP in space and time, maintained by A-kinase anchoring proteins, phosphodiesterases, and β-arrestins, contributes to the Epac signalosome of small GTPases, phospholipases, mitogen- and lipid-activated kinases, and transcription factors. These novel cAMP sensors seem to implement certain unexpected signaling properties of cAMP and thereby to permit delicate adaptations of biologic responses. Agonists and antagonists selective for Epac are developed and will support further studies on the biologic net outcome of the activation of Epac. This will increase our current knowledge on the pathophysiology of devastating diseases, such as diabetes, cognitive impairment, renal and heart failure, (pulmonary) hypertension, asthma, and chronic obstructive pulmonary disease. Further insights into the cAMP dynamics executed by the Epac signalosome will help to optimize the pharmacological treatment of these diseases.


Drug Discovery Today | 2011

Histone acetyltransferases are crucial regulators in NF-κB mediated inflammation

Massimo Ghizzoni; Hidde J. Haisma; Harm Maarsingh; Frank J. Dekker

Post-translational modifications of proteins, such as acetylation, are important regulatory events in eukaryotic cells. Reversible acetylations of histones and non-histone proteins regulate gene expression and protein activity. Acetylation levels of proteins are regulated by a dynamic equilibrium between acetylation by (histone) acetyltransferases and deacetylation by (histone) deacetylases. Alterations in this equilibrium can result in pathological states. Inflammation is a physiological response that, under certain conditions, turns into a disease. This review focuses on the crucial regulatory roles of protein acetylation in NF-κB-mediated inflammation and the potential applications of small-molecule inhibitors of acetylation for the treatment of inflammatory diseases.


Angewandte Chemie | 2011

Identification of Acyl Protein Thioesterases 1 and 2 as the Cellular Targets of the Ras-Signaling Modulators Palmostatin B and M

Marion Rusch; Tobias J. Zimmermann; Marco Bürger; Frank J. Dekker; Kristina Görmer; Gemma Triola; Andreas Brockmeyer; Petra Janning; Thomas Böttcher; Stephan A. Sieber; Ingrid R. Vetter; Christian Hedberg; Herbert Waldmann

Finding the target: activity-based proteomic profiling probes based on the depalmitoylation inhibitors palmostatin B and M have been synthesized and were found to target acyl protein thioesterase 1 (APT1) and 2 (APT2) in cells.


European Journal of Medicinal Chemistry | 2012

6-alkylsalicylates are selective Tip60 inhibitors and target the acetyl-CoA binding site

Massimo Ghizzoni; Jiang Wu; Tielong Gao; Hidde J. Haisma; Frank J. Dekker; Y. George Zheng

Histone acetyltransferases are important enzymes that regulate various cellular functions, such as epigenetic control of DNA transcription. Development of HAT inhibitors with high selectivity and potency will provide powerful mechanistic tools for the elucidation of the biological functions of HATs and may also have pharmacological value for potential new therapies. In this work, analogs of the known HAT inhibitor anacardic acid were synthesized and evaluated for inhibition of HAT activity. Biochemical assays revealed novel anacardic acid analogs that inhibited the human recombinant enzyme Tip60 selectively compared to PCAF and p300. Enzyme kinetics studies demonstrated that inhibition of Tip60 by one such novel anacardic acid derive, 20, was essentially competitive with Ac-CoA and non-competitive with the histone substrate. In addition, these HAT inhibitors effectively inhibited acetyltransferase activity of nuclear extracts on the histone H3 and H4 at micromolar concentrations.


Bioorganic & Medicinal Chemistry | 2010

Improved inhibition of the histone acetyltransferase PCAF by an anacardic acid derivative

Massimo Ghizzoni; André Boltjes; Chris de Graaf; Hidde J. Haisma; Frank J. Dekker

Several lines of evidence indicate that histone acetyltransferases (HATs) are novel drug targets for treatment of diseases like, for example, cancer and inflammation. The natural product anacardic acid is a starting point for development of small molecule inhibitors of the histone acetyltransferase (HAT) p300/CBP associated factor (PCAF). In order to optimize the inhibitory potency, a binding model for PCAF inhibition by anacardic acid was proposed and new anacardic acid derivatives were designed. Ten new derivatives were synthesized using a novel synthetic route. One compound showed a twofold improved inhibitory potency for the PCAF HAT activity and a twofold improved inhibition of histone acetylation in HEP G2 cells.


Angewandte Chemie | 2011

Development of Highly Potent Inhibitors of the Ras‐Targeting Human Acyl Protein Thioesterases Based on Substrate Similarity Design

Christian Hedberg; Frank J. Dekker; Marion Rusch; Steffen Renner; Stefan Wetzel; Nachiket Vartak; Claas Gerding-Reimers; Robin S. Bon; Philippe I. H. Bastiaens; Herbert Waldmann

A matter of common sense: a common recognition motif consisting of a negatively charged group five to six bonds away (red) from the (thio)ester functionality (green) and a positively charged tail group ten to twelve bonds away (blue) was identified in two native acyl protein thioesterase 1 (APT1) substrates. This similarity led to the design of potent inhibitors of the Ras-depalmitoylating enzyme APT1.


Blood | 2012

Inhibiting the palmitoylation/depalmitoylation cycle selectively reduces the growth of hematopoietic cells expressing oncogenic Nras

Jin Xu; Christian Hedberg; Frank J. Dekker; Qing Li; Kevin M. Haigis; Eugene Hwang; Herbert Waldmann; Kevin Shannon

The palmitoylation/depalmitoylation cycle of posttranslational processing is a potential therapeutic target for selectively inhibiting the growth of hematologic cancers with somatic NRAS mutations. To investigate this question at the single-cell level, we constructed murine stem cell virus vectors and assayed the growth of myeloid progenitors. Whereas cells expressing oncogenic N-Ras(G12D) formed cytokine-independent colonies and were hypersensitive to GM-CSF, mutations within the N-Ras hypervariable region induced N-Ras mislocalization and attenuated aberrant progenitor growth. Exposing transduced hematopoietic cells and bone marrow from Nras and Kras mutant mice to the acyl protein thioesterase inhibitor palmostatin B had similar effects on protein localization and colony growth. Importantly, palmostatin B-mediated inhibition was selective for Nras mutant cells, and we mapped this activity to the hypervariable region. These data support the clinical development of depalmitoylation inhibitors as a novel class of rational therapeutics in hematologic malignancies with NRAS mutations.

Collaboration


Dive into the Frank J. Dekker's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge