Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Frank J. Schoenen is active.

Publication


Featured researches published by Frank J. Schoenen.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Reversible inhibitor of p97, DBeQ, impairs both ubiquitin-dependent and autophagic protein clearance pathways

Tsui-Fen Chou; Steve J. Brown; Dmitriy Minond; Brian E. Nordin; Kelin Li; Amanda C. Jones; Peter Chase; Patrick Porubsky; Brian M. Stoltz; Frank J. Schoenen; Matthew P. Patricelli; Peter Hodder; Hugh Rosen; Raymond J. Deshaies

A specific small-molecule inhibitor of p97 would provide an important tool to investigate diverse functions of this essential ATPase associated with diverse cellular activities (AAA) ATPase and to evaluate its potential to be a therapeutic target in human disease. We carried out a high-throughput screen to identify inhibitors of p97 ATPase activity. Dual-reporter cell lines that simultaneously express p97-dependent and p97-independent proteasome substrates were used to stratify inhibitors that emerged from the screen. N2,N4-dibenzylquinazoline-2,4-diamine (DBeQ) was identified as a selective, potent, reversible, and ATP-competitive p97 inhibitor. DBeQ blocks multiple processes that have been shown by RNAi to depend on p97, including degradation of ubiquitin fusion degradation and endoplasmic reticulum-associated degradation pathway reporters, as well as autophagosome maturation. DBeQ also potently inhibits cancer cell growth and is more rapid than a proteasome inhibitor at mobilizing the executioner caspases-3 and -7. Our results provide a rationale for targeting p97 in cancer therapy.


Cell | 2015

Advancing Biological Understanding and Therapeutics Discovery with Small-Molecule Probes

Stuart L. Schreiber; Joanne Kotz; Min Li; Jeffrey Aubé; Christopher P. Austin; John C. Reed; Hugh Rosen; E. Lucile White; Larry A. Sklar; Craig W. Lindsley; Benjamin Alexander; Joshua Bittker; Paul A. Clemons; Andrea de Souza; Michael Foley; Michelle Palmer; Alykhan F. Shamji; Mathias J. Wawer; Owen B. McManus; Meng Wu; Beiyan Zou; Haibo Yu; Jennifer E. Golden; Frank J. Schoenen; Anton Simeonov; Ajit Jadhav; Michael R. Jackson; Anthony B. Pinkerton; Thomas Dy Chung; Patrick R. Griffin

Small-molecule probes can illuminate biological processes and aid in the assessment of emerging therapeutic targets by perturbing biological systems in a manner distinct from other experimental approaches. Despite the tremendous promise of chemical tools for investigating biology and disease, small-molecule probes were unavailable for most targets and pathways as recently as a decade ago. In 2005, the NIH launched the decade-long Molecular Libraries Program with the intent of innovating in and broadening access to small-molecule science. This Perspective describes how novel small-molecule probes identified through the program are enabling the exploration of biological pathways and therapeutic hypotheses not otherwise testable. These experiences illustrate how small-molecule probes can help bridge the chasm between biological research and the development of medicines but also highlight the need to innovate the science of therapeutic discovery.


ChemMedChem | 2013

Structure–Activity Relationship Study Reveals ML240 and ML241 as Potent and Selective Inhibitors of p97 ATPase

Tsui Fen Chou; Kelin Li; Kevin J. Frankowski; Frank J. Schoenen; Raymond J. Deshaies

To discover more potent p97 inhibitors, we carried out a structure–activity relationship study of the quinazoline scaffold previously identified from our HTS campaigns. Two improved inhibitors, ML240 and ML241, inhibit p97 ATPase with IC50 values of 100u2005nM. Both compounds inhibited degradation of a p97‐dependent but not a p97‐independent proteasome substrate in a dual‐reporter cell line. They also impaired the endoplasmic‐reticulum‐associated degradation (ERAD) pathway. Unexpectedly, ML240 potently stimulated accumulation of LC3‐II within minutes, inhibited cancer cell growth, and rapidly mobilized the executioner caspases 3 and 7, whereas ML241 did not. The behavior of ML240 suggests that disruption of the protein homeostasis function of p97 leads to more rapid activation of apoptosis than is observed with a proteasome inhibitor. Further characterization revealed that ML240 has broad antiproliferative activity toward the NCI‐60 panel of cancer cell lines, but slightly lower activity toward normal cells. ML240 also synergizes with the proteasome inhibitor MG132 to kill multiple colon cancer cell lines. Meanwhile, both probes have low off‐target activity toward a panel of protein kinases and central nervous system targets. Our results nominate ML240 as a promising starting point for the development of a novel agent for the chemotherapy of cancer, and provide a rationale for developing pathway‐specific p97 inhibitors.


Journal of Molecular Biology | 2014

Specific inhibition of p97/VCP ATPase and kinetic analysis demonstrate interaction between D1 and D2 ATPase domains.

Tsui Fen Chou; Stacie L. Bulfer; Conrad C. Weihl; Kelin Li; Lev Lis; Michael A. Walters; Frank J. Schoenen; Henry J. Lin; Raymond J. Deshaies; Michelle R. Arkin

The p97 AAA (ATPase associated with diverse cellular activities), also called VCP (valosin-containing protein), is an important therapeutic target for cancer and neurodegenerative diseases. p97 forms a hexamer composed of two AAA domains (D1 and D2) that form two stacked rings and an N-terminal domain that binds numerous cofactor proteins. The interplay between the three domains in p97 is complex, and a deeper biochemical understanding is needed in order to design selective p97 inhibitors as therapeutic agents. It is clear that the D2 ATPase domain hydrolyzes ATP in vitro, but whether D1 contributes to ATPase activity is controversial. Here, we use Walker A and B mutants to demonstrate that D1 is capable of hydrolyzing ATP and show for the first time that nucleotide binding in the D2 domain increases the catalytic efficiency (kcat/Km) of D1 ATP hydrolysis 280-fold, by increasing kcat 7-fold and decreasing Km about 40-fold. We further show that an ND1 construct lacking D2 but including the linker between D1 and D2 is catalytically active, resolving a conflict in the literature. Applying enzymatic observations to small-molecule inhibitors, we show that four p97 inhibitors (DBeQ, ML240, ML241, and NMS-873) have differential responses to Walker A and B mutations, to disease-causing IBMPFD mutations, and to the presence of the N domain binding cofactor protein p47. These differential effects provide the first evidence that p97 cofactors and disease mutations can alter p97 inhibitor potency and suggest the possibility of developing context-dependent inhibitors of p97.


Journal of Medicinal Chemistry | 2012

Optimization of Potent Hepatitis C Virus NS3 Helicase Inhibitors Isolated from the Yellow Dyes Thioflavine S and Primuline

Kelin Li; Kevin J. Frankowski; Craig A. Belon; Ben Neuenswander; Jean Ndjomou; Alicia M. Hanson; Matthew A. Shanahan; Frank J. Schoenen; Brian S. J. Blagg; Jeffrey Aubé; David N. Frick

A screen for hepatitis C virus (HCV) NS3 helicase inhibitors revealed that the commercial dye thioflavine S was the most potent inhibitor of NS3-catalyzed DNA and RNA unwinding in the 827-compound National Cancer Institute Mechanistic Set. Thioflavine S and the related dye primuline were separated here into their pure components, all of which were oligomers of substituted benzothiazoles. The most potent compound (P4), a benzothiazole tetramer, inhibited unwinding >50% at 2 ± 1 μM, inhibited the subgenomic HCV replicon at 10 μM, and was not toxic at 100 μM. Because P4 also interacted with DNA, more specific analogues were synthesized from the abundant dimeric component of primuline. Some of the 32 analogues prepared retained ability to inhibit HCV helicase but did not appear to interact with DNA. The most potent of these specific helicase inhibitors (compound 17) was active against the replicon and inhibited the helicase more than 50% at 2.6 ± 1 μM.


The Journal of Neuroscience | 2016

A new glucocerebrosidase chaperone reduces α-synuclein and glycolipid levels in iPSC-derived dopaminergic neurons from patients with gaucher disease and parkinsonism

Elma Aflaki; Daniel K. Borger; Nima Moaven; Barbara K. Stubblefield; Steven A. Rogers; Samarjit Patnaik; Frank J. Schoenen; Wendy Westbroek; Wei Zheng; Patricia Sullivan; Hideji Fujiwara; Rohini Sidhu; Zayd M. Khaliq; Grisel Lopez; David S. Goldstein; Daniel S. Ory; Juan J. Marugan; Ellen Sidransky

Among the known genetic risk factors for Parkinson disease, mutations in GBA1, the gene responsible for the lysosomal disorder Gaucher disease, are the most common. This genetic link has directed attention to the role of the lysosome in the pathogenesis of parkinsonism. To study how glucocerebrosidase impacts parkinsonism and to evaluate new therapeutics, we generated induced human pluripotent stem cells from four patients with Type 1 (non-neuronopathic) Gaucher disease, two with and two without parkinsonism, and one patient with Type 2 (acute neuronopathic) Gaucher disease, and differentiated them into macrophages and dopaminergic neurons. These cells exhibited decreased glucocerebrosidase activity and stored the glycolipid substrates glucosylceramide and glucosylsphingosine, demonstrating their similarity to patients with Gaucher disease. Dopaminergic neurons from patients with Type 2 and Type 1 Gaucher disease with parkinsonism had reduced dopamine storage and dopamine transporter reuptake. Levels of α-synuclein, a protein present as aggregates in Parkinson disease and related synucleinopathies, were selectively elevated in neurons from the patients with parkinsonism or Type 2 Gaucher disease. The cells were then treated with NCGC607, a small-molecule noninhibitory chaperone of glucocerebrosidase identified by high-throughput screening and medicinal chemistry structure optimization. This compound successfully chaperoned the mutant enzyme, restored glucocerebrosidase activity and protein levels, and reduced glycolipid storage in both iPSC-derived macrophages and dopaminergic neurons, indicating its potential for treating neuronopathic Gaucher disease. In addition, NCGC607 reduced α-synuclein levels in dopaminergic neurons from the patients with parkinsonism, suggesting that noninhibitory small-molecule chaperones of glucocerebrosidase may prove useful for the treatment of Parkinson disease. SIGNIFICANCE STATEMENT Because GBA1 mutations are the most common genetic risk factor for Parkinson disease, dopaminergic neurons were generated from iPSC lines derived from patients with Gaucher disease with and without parkinsonism. These cells exhibit deficient enzymatic activity, reduced lysosomal glucocerebrosidase levels, and storage of glucosylceramide and glucosylsphingosine. Lines generated from the patients with parkinsonism demonstrated elevated levels of α-synuclein. To reverse the observed phenotype, the neurons were treated with a novel noninhibitory glucocerebrosidase chaperone, which successfully restored glucocerebrosidase activity and protein levels and reduced glycolipid storage. In addition, the small-molecule chaperone reduced α-synuclein levels in dopaminergic neurons, indicating that chaperoning glucocerebrosidase to the lysosome may provide a novel therapeutic strategy for both Parkinson disease and neuronopathic forms of Gaucher disease.


Bioorganic & Medicinal Chemistry Letters | 2013

Small-molecule pyrimidine inhibitors of the cdc2-like (Clk) and dual specificity tyrosine phosphorylation-regulated (Dyrk) kinases: Development of chemical probe ML315

Thomas C. Coombs; Cordelle Tanega; Min Shen; Jenna L. Wang; Douglas S. Auld; Samuel W. Gerritz; Frank J. Schoenen; Craig J. Thomas; Jeffrey Aubé

Substituted pyrimidine inhibitors of the Clk and Dyrk kinases have been developed, exploring structure-activity relationships around four different chemotypes. The most potent compounds have low-nanomolar inhibitory activity against Clk1, Clk2, Clk4, Dyrk1A and Dyrk1B. Kinome scans with 442 kinases using agents representing three of the chemotypes show these inhibitors to be highly selective for the Clk and Dyrk families. Further off-target pharmacological evaluation with ML315, the most selective agent, supports this conclusion.


ACS Combinatorial Science | 2009

One-pot, three-component, domino Heck-aza-Michael approach to libraries of functionalized 1,1-dioxido-1,2-benzisothiazoline-3-acetic acids.

Alan Rolfe; Kyle Young; Kelly A. Volp; Frank J. Schoenen; Benjamin Neuenswander; Gerald H. Lushington; Paul R. Hanson

A sequential three-component synthesis of functionalized benzisothiazoline-3-acetic acid 1,1-dioxides utilizing a domino Heck-aza-Michael pathway is reported. This one-pot procedure rapidly assembles functionalized benzylsulfonamides, which undergo a palladium-catalyzed, domino, Heck-aza-Michael transformation in an experimentally straightforward manner. This attractive protocol has been utilized to synthesize three combinatorial sublibraries (I-III) comprising a total of 95 compounds in high purities (> or =95% for 75 compounds), yield and quantities.


ChemMedChem | 2015

Discovery, Synthesis, and Optimization of Diarylisoxazole-3-carboxamides as Potent Inhibitors of the Mitochondrial Permeability Transition Pore

Sudeshna Roy; Justina Šileikytė; Marco Schiavone; Benjamin Neuenswander; Francesco Argenton; Jeffrey Aubé; Michael Hedrick; Thomas Dy Chung; Michael Forte; Paolo Bernardi; Frank J. Schoenen

The mitochondrial permeability transition pore (mtPTP) is a Ca2+‐requiring mega‐channel which, under pathological conditions, leads to the deregulated release of Ca2+ and mitochondrial dysfunction, ultimately resulting in cell death. Although the mtPTP is a potential therapeutic target for many human pathologies, its potential as a drug target is currently unrealized. Herein we describe an optimization effort initiated around hit 1, 5‐(3‐hydroxyphenyl)‐N‐(3,4,5‐trimethoxyphenyl)isoxazole‐3‐carboxamide, which was found to possess promising inhibitory activity against mitochondrial swelling (EC50<0.39u2005μM) and showed no interference on the inner mitochondrial membrane potential (rhodamineu2005123 uptake EC50>100u2005μM). This enabled the construction of a series of picomolar mtPTP inhibitors that also potently increase the calcium retention capacity of the mitochondria. Finally, the therapeutic potential and in vivo efficacy of one of the most potent analogues, N‐(3‐chloro‐2‐methylphenyl)‐5‐(4‐fluoro‐3‐hydroxyphenyl)isoxazole‐3‐carboxamide (60), was validated in a biologically relevant zebrafish model of collagenu2005VI congenital muscular dystrophies.


ACS Chemical Biology | 2014

Ebselen Inhibits Hepatitis C Virus NS3 Helicase Binding to Nucleic Acid and Prevents Viral Replication

Sourav Mukherjee; Warren S. Weiner; Chad E. Schroeder; Denise S. Simpson; Alicia M. Hanson; Noreena L. Sweeney; Rachel K. Marvin; Jean Ndjomou; Rajesh Kolli; Dragan Isailovic; Frank J. Schoenen; David N. Frick

The hepatitis C virus (HCV) nonstructural protein 3 (NS3) is both a protease, which cleaves viral and host proteins, and a helicase that separates nucleic acid strands, using ATP hydrolysis to fuel the reaction. Many antiviral drugs, and compounds in clinical trials, target the NS3 protease, but few helicase inhibitors that function as antivirals have been reported. This study focuses on the analysis of the mechanism by which ebselen (2-phenyl-1,2-benzisoselenazol-3-one), a compound previously shown to be a HCV antiviral agent, inhibits the NS3 helicase. Ebselen inhibited the abilities of NS3 to unwind nucleic acids, to bind nucleic acids, and to hydrolyze ATP, and about 1 μM ebselen was sufficient to inhibit each of these activities by 50%. However, ebselen had no effect on the activity of the NS3 protease, even at 100 times higher ebselen concentrations. At concentrations below 10 μM, the ability of ebselen to inhibit HCV helicase was reversible, but prolonged incubation of HCV helicase with higher ebselen concentrations led to irreversible inhibition and the formation of covalent adducts between ebselen and all 14 cysteines present in HCV helicase. Ebselen analogues with sulfur replacing the selenium were just as potent HCV helicase inhibitors as ebselen, but the length of the linker between the phenyl and benzisoselenazol rings was critical. Modifications of the phenyl ring also affected compound potency over 30-fold, and ebselen was a far more potent helicase inhibitor than other, structurally unrelated, thiol-modifying agents. Ebselen analogues were also more effective antiviral agents, and they were less toxic to hepatocytes than ebselen. Although the above structure–activity relationship studies suggest that ebselen targets a specific site on NS3, we were unable to confirm binding to either the NS3 ATP binding site or nucleic acid binding cleft by examining the effects of ebselen on NS3 proteins lacking key cysteines.

Collaboration


Dive into the Frank J. Schoenen's collaboration.

Top Co-Authors

Avatar

Jeffrey Aubé

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kelin Li

University of Kansas

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David N. Frick

University of Wisconsin–Milwaukee

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Juan J. Marugan

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alicia M. Hanson

University of Wisconsin–Milwaukee

View shared research outputs
Researchain Logo
Decentralizing Knowledge