Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Frank J. Stewart is active.

Publication


Featured researches published by Frank J. Stewart.


Science | 2010

A Cryptic Sulfur Cycle in Oxygen-Minimum–Zone Waters off the Chilean Coast

Donald E. Canfield; Frank J. Stewart; Bo Thamdrup; Loreto De Brabandere; Tage Dalsgaard; Edward F. DeLong; Niels Peter Revsbech; Osvaldo Ulloa

Cryptic Sulfur Cycling Aerobic bacteria and ocean circulation patterns control the formation and distribution of oxygen-minimum zones at moderate depth in the oceans. These habitats host microorganisms that thrive on other metabolic substrates in the absence of oxygen—most commonly, metabolizing thermodynamically favorable nitrogen compounds like nitrate. Off the coast of Chile, however, Canfield et al. (p. 1375, published online 11 November; see the Perspective by Teske) suggest that bacteria may often reduce sulfate as well. Metagenomic sequencing revealed the presence of both sulfate-reducing and sulfide-oxidizing bacteria. With the coincidence of sulfate and nitrate reduction, the sulfur and nitrogen cycles may be intimately linked; for example, sulfate reduction could provide nitrogen-rich ammonium for bacteria that ultimately transform it into nitrogen gas. Bacterial sulfur reduction and oxidation accompanies nitrogen cycling where oxygen levels at depth are low. Nitrogen cycling is normally thought to dominate the biogeochemistry and microbial ecology of oxygen-minimum zones in marine environments. Through a combination of molecular techniques and process rate measurements, we showed that both sulfate reduction and sulfide oxidation contribute to energy flux and elemental cycling in oxygen-free waters off the coast of northern Chile. These processes may have been overlooked because in nature, the sulfide produced by sulfate reduction immediately oxidizes back to sulfate. This cryptic sulfur cycle is linked to anammox and other nitrogen cycling processes, suggesting that it may influence biogeochemical cycling in the global ocean.


Nucleic Acids Research | 2014

CRISPR/Cas9 systems have off-target activity with insertions or deletions between target DNA and guide RNA sequences

Yanni Lin; Thomas J. Cradick; Matthew T. Brown; Harshavardhan Deshmukh; Piyush Ranjan; Neha Sarode; Brian Wile; Paula M. Vertino; Frank J. Stewart; Gang Bao

CRISPR/Cas9 systems are a versatile tool for genome editing due to the highly efficient targeting of DNA sequences complementary to their RNA guide strands. However, it has been shown that RNA-guided Cas9 nuclease cleaves genomic DNA sequences containing mismatches to the guide strand. A better understanding of the CRISPR/Cas9 specificity is needed to minimize off-target cleavage in large mammalian genomes. Here we show that genomic sites could be cleaved by CRISPR/Cas9 systems when DNA sequences contain insertions (‘DNA bulge’) or deletions (‘RNA bulge’) compared to the RNA guide strand, and Cas9 nickases used for paired nicking can also tolerate bulges in one of the guide strands. Variants of single-guide RNAs (sgRNAs) for four endogenous loci were used as model systems, and their cleavage activities were quantified at different positions with 1- to 5-bp bulges. We further investigated 114 putative genomic off-target loci of 27 different sgRNAs and confirmed 15 off-target sites, each harboring a single-base bulge and one to three mismatches to the guide strand. Our results strongly indicate the need to perform comprehensive off-target analysis related to DNA and sgRNA bulges in addition to base mismatches, and suggest specific guidelines for reducing potential off-target cleavage.


Environmental Microbiology | 2012

Microbial metatranscriptomics in a permanent marine oxygen minimum zone

Frank J. Stewart; Osvaldo Ulloa; Edward F. DeLong

Simultaneous characterization of taxonomic composition, metabolic gene content and gene expression in marine oxygen minimum zones (OMZs) has potential to broaden perspectives on the microbial and biogeochemical dynamics in these environments. Here, we present a metatranscriptomic survey of microbial community metabolism in the Eastern Tropical South Pacific OMZ off northern Chile. Community RNA was sampled in late austral autumn from four depths (50, 85, 110, 200 m) extending across the oxycline and into the upper OMZ. Shotgun pyrosequencing of cDNA yielded 180,000 to 550,000 transcript sequences per depth. Based on functional gene representation, transcriptome samples clustered apart from corresponding metagenome samples from the same depth, highlighting the discrepancies between metabolic potential and actual transcription. BLAST-based characterizations of non-ribosomal RNA sequences revealed a dominance of genes involved with both oxidative (nitrification) and reductive (anammox, denitrification) components of the marine nitrogen cycle. Using annotations of protein-coding genes as proxies for taxonomic affiliation, we observed depth-specific changes in gene expression by key functional taxonomic groups. Notably, transcripts most closely matching the genome of the ammonia-oxidizing archaeon Nitrosopumilus maritimus dominated the transcriptome in the upper three depths, representing one in five protein-coding transcripts at 85 m. In contrast, transcripts matching the anammox bacterium Kuenenia stuttgartiensis dominated at the core of the OMZ (200 m; 1 in 12 protein-coding transcripts). The distribution of N. maritimus-like transcripts paralleled that of transcripts matching ammonia monooxygenase genes, which, despite being represented by both bacterial and archaeal sequences in the community DNA, were dominated (> 99%) by archaeal sequences in the RNA, suggesting a substantial role for archaeal nitrification in the upper OMZ. These data, as well as those describing other key OMZ metabolic processes (e.g. sulfur oxidation), highlight gene-specific expression patterns in the context of the entire community transcriptome, as well as identify key functional groups for taxon-specific genomic profiling.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Microbial oceanography of anoxic oxygen minimum zones

Osvaldo Ulloa; Donald E. Canfield; Edward F. DeLong; Ricardo M. Letelier; Frank J. Stewart

Vast expanses of oxygen-deficient and nitrite-rich water define the major oxygen minimum zones (OMZs) of the global ocean. They support diverse microbial communities that influence the nitrogen economy of the oceans, contributing to major losses of fixed nitrogen as dinitrogen (N2) and nitrous oxide (N2O) gases. Anaerobic microbial processes, including the two pathways of N2 production, denitrification and anaerobic ammonium oxidation, are oxygen-sensitive, with some occurring only under strictly anoxic conditions. The detection limit of the usual method (Winkler titrations) for measuring dissolved oxygen in seawater, however, is much too high to distinguish low oxygen conditions from true anoxia. However, new analytical technologies are revealing vanishingly low oxygen concentrations in nitrite-rich OMZs, indicating that these OMZs are essentially anoxic marine zones (AMZs). Autonomous monitoring platforms also reveal previously unrecognized episodic intrusions of oxygen into the AMZ core, which could periodically support aerobic metabolisms in a typically anoxic environment. Although nitrogen cycling is considered to dominate the microbial ecology and biogeochemistry of AMZs, recent environmental genomics and geochemical studies show the presence of other relevant processes, particularly those associated with the sulfur and carbon cycles. AMZs correspond to an intermediate state between two “end points” represented by fully oxic systems and fully sulfidic systems. Modern and ancient AMZs and sulfidic basins are chemically and functionally related. Global change is affecting the magnitude of biogeochemical fluxes and ocean chemical inventories, leading to shifts in AMZ chemistry and biology that are likely to continue well into the future.


The ISME Journal | 2010

Development and quantitative analyses of a universal rRNA-subtraction protocol for microbial metatranscriptomics

Frank J. Stewart; Elizabeth A. Ottesen; Edward F. DeLong

Metatranscriptomes generated by pyrosequencing hold significant potential for describing functional processes in complex microbial communities. Meeting this potential requires protocols that maximize mRNA recovery by reducing the relative abundance of ribosomal RNA, as well as systematic comparisons to identify methodological artifacts and test for reproducibility across data sets. Here, we implement a protocol for subtractive hybridization of bacterial rRNA (16S and 23S) that uses sample-specific probes and is applicable across diverse environmental samples. To test this method, rRNA-subtracted and unsubtracted transcriptomes were sequenced (454 FLX technology) from bacterioplankton communities at two depths in the oligotrophic open ocean, yielding 10 data sets representing ∼350 Mbp. Subtractive hybridization reduced bacterial rRNA transcript abundance by 40–58%, increasing recovery of non-rRNA sequences up to fourfold (from 12% to 20% of total sequences to 40–49%). In testing this method, we established criteria for detecting sequences replicated artificially via pyrosequencing errors and identified such replicates as a significant component (6–39%) of total pyrosequencing reads. Following replicate removal, statistical comparisons of reference genes (identified via BLASTX to NCBI-nr) between technical replicates and between rRNA-subtracted and unsubtracted samples showed low levels of differential transcript abundance (<0.2% of reference genes). However, gene overlap between data sets was remarkably low, with no two data sets (including duplicate runs from the same pyrosequencing library template) sharing greater than 17% of unique reference genes. These results indicate that pyrosequencing captures a small subset of total mRNA diversity and underscores the importance of reliable rRNA subtraction procedures to enhance sequencing coverage across the functional transcript pool.


The ISME Journal | 2014

Metagenomic analysis of size-fractionated picoplankton in a marine oxygen minimum zone

Sangita Ganesh; Darren J. Parris; Edward F. DeLong; Frank J. Stewart

Marine oxygen minimum zones (OMZs) support diverse microbial communities with roles in major elemental cycles. It is unclear how the taxonomic composition and metabolism of OMZ microorganisms vary between particle-associated and free-living size fractions. We used amplicon (16S rRNA gene) and shotgun metagenome sequencing to compare microbial communities from large (>1.6 μm) and small (0.2–1.6 μm) filter size fractions along a depth gradient in the OMZ off Chile. Despite steep vertical redox gradients, size fraction was a significantly stronger predictor of community composition compared to depth. Phylogenetic diversity showed contrasting patterns, decreasing towards the anoxic OMZ core in the small size fraction, but exhibiting maximal values at these depths within the larger size fraction. Fraction-specific distributions were evident for key OMZ taxa, including anammox planctomycetes, whose coding sequences were enriched up to threefold in the 0.2–1.6 μm community. Functional gene composition also differed between fractions, with the >1.6 μm community significantly enriched in genes mediating social interactions, including motility, adhesion, cell-to-cell transfer, antibiotic resistance and mobile element activity. Prokaryotic transposase genes were three to six fold more abundant in this fraction, comprising up to 2% of protein-coding sequences, suggesting that particle surfaces may act as hotbeds for transposition-based genome changes in marine microbes. Genes for nitric and nitrous oxide reduction were also more abundant (three to seven fold) in the larger size fraction, suggesting microniche partitioning of key denitrification steps. These results highlight an important role for surface attachment in shaping community metabolic potential and genome content in OMZ microorganisms.


Mbio | 2014

Oxygen at Nanomolar Levels Reversibly Suppresses Process Rates and Gene Expression in Anammox and Denitrification in the Oxygen Minimum Zone off Northern Chile

Tage Dalsgaard; Frank J. Stewart; Bo Thamdrup; Loreto De Brabandere; Niels Peter Revsbech; Osvaldo Ulloa; Donald E. Canfield; Edward F. DeLong

ABSTRACT A major percentage (20 to 40%) of global marine fixed-nitrogen loss occurs in oxygen minimum zones (OMZs). Concentrations of O2 and the sensitivity of the anaerobic N2-producing processes of anammox and denitrification determine where this loss occurs. We studied experimentally how O2 at nanomolar levels affects anammox and denitrification rates and the transcription of nitrogen cycle genes in the anoxic OMZ off Chile. Rates of anammox and denitrification were reversibly suppressed, most likely at the enzyme level. Fifty percent inhibition of N2 and N2O production by denitrification was achieved at 205 and 297 nM O2, respectively, whereas anammox was 50% inhibited at 886 nM O2. Coupled metatranscriptomic analysis revealed that transcripts encoding nitrous oxide reductase (nosZ), nitrite reductase (nirS), and nitric oxide reductase (norB) decreased in relative abundance above 200 nM O2. This O2 concentration did not suppress the transcription of other dissimilatory nitrogen cycle genes, including nitrate reductase (narG), hydrazine oxidoreductase (hzo), and nitrite reductase (nirK). However, taxonomic characterization of transcripts suggested inhibition of narG transcription in gammaproteobacteria, whereas the transcription of anammox narG, whose gene product is likely used to oxidatively replenish electrons for carbon fixation, was not inhibited. The taxonomic composition of transcripts differed among denitrification enzymes, suggesting that distinct groups of microorganisms mediate different steps of denitrification. Sulfide addition (1 µM) did not affect anammox or O2 inhibition kinetics but strongly stimulated N2O production by denitrification. These results identify new O2 thresholds for delimiting marine nitrogen loss and highlight the utility of integrating biogeochemical and metatranscriptomic analyses. IMPORTANCE The removal of fixed nitrogen via anammox and denitrification associated with low O2 concentrations in oceanic oxygen minimum zones (OMZ) is a major sink in oceanic N budgets, yet the sensitivity and dynamics of these processes with respect to O2 are poorly known. The present study elucidated how nanomolar O2 concentrations affected nitrogen removal rates and expression of key nitrogen cycle genes in water from the eastern South Pacific OMZ, applying state-of-the-art 15N techniques and metatranscriptomics. Rates of both denitrification and anammox responded rapidly and reversibly to changes in O2, but denitrification was more O2 sensitive than anammox. The transcription of key nitrogen cycle genes did not respond as clearly to O2, although expression of some of these genes decreased. Quantifying O2 sensitivity of these processes is essential for predicting through which pathways and in which environments, from wastewater treatment to the open oceans, nitrogen removal may occur. The removal of fixed nitrogen via anammox and denitrification associated with low O2 concentrations in oceanic oxygen minimum zones (OMZ) is a major sink in oceanic N budgets, yet the sensitivity and dynamics of these processes with respect to O2 are poorly known. The present study elucidated how nanomolar O2 concentrations affected nitrogen removal rates and expression of key nitrogen cycle genes in water from the eastern South Pacific OMZ, applying state-of-the-art 15N techniques and metatranscriptomics. Rates of both denitrification and anammox responded rapidly and reversibly to changes in O2, but denitrification was more O2 sensitive than anammox. The transcription of key nitrogen cycle genes did not respond as clearly to O2, although expression of some of these genes decreased. Quantifying O2 sensitivity of these processes is essential for predicting through which pathways and in which environments, from wastewater treatment to the open oceans, nitrogen removal may occur.


Environmental Microbiology | 2015

Saccharide breakdown and fermentation by the honey bee gut microbiome

Fredrick J. Lee; Douglas B. Rusch; Frank J. Stewart; Heather R. Mattila; Irene L. G. Newton

The honey bee, the worlds most important agricultural pollinator, relies exclusively on plant-derived foods for nutrition. Nectar and pollen collected by honey bees are processed and matured within the nest through the activities of honey bee-derived microbes and enzymes. In order to better understand the contribution of the microbial community to food processing in the honey bee, we generated a metatranscriptome of the honey bee gut microbiome. The function of the microbial community in the honey bee, as revealed by metatranscriptome sequencing, resembles that of other animal guts and food-processing environments. We identified three major bacterial classes that are active in the gut (γ-Proteobacteria, Bacilli and Actinobacteria), all of which are predicted to participate in the breakdown of complex macromolecules (e.g. polysaccharides and polypeptides), the fermentation of component parts of these macromolecules, and the generation of various fermentation products, such as short-chain fatty acids and alcohol. The ability of the microbial community to metabolize these carbon-rich food sources was confirmed through the use of community-level physiological profiling. Collectively, these findings suggest that the gut microflora of the honey bee harbours bacterial members with unique roles, which ultimately can contribute to the processing of plant-derived food for colonies.


Ecology | 2012

Microbial community phylogenetic and trait diversity declines with depth in a marine oxygen minimum zone

Jessica A. Bryant; Frank J. Stewart; John M. Eppley; Edward F. DeLong

Oxygen minimum zones (OMZs) are natural physical features of the worlds oceans. They create steep physiochemical gradients in the water column, which most notably include a dramatic draw down in oxygen concentrations over small vertical distances (<100 m). Microbial communities within OMZs play central roles in ocean and global biogeochemical cycles, yet we still lack a fundamental understanding of how microbial biodiversity is distributed across OMZs. Here, we used metagenomic sequencing to investigate microbial diversity across a vertical gradient in the water column during three seasons in the Eastern Tropical South Pacific (ETSP) OMZ. Based on analysis of small subunit ribosomal RNA (SSU rRNA) gene fragments, we found that both taxonomic and phylogenetic diversity declined steeply along the transition from oxygen-rich surface water to the permanent OMZ. We observed similar declines in the diversity of protein-coding gene categories, suggesting a decrease in functional (trait) diversity with depth. Metrics of functional and trait dispersion indicated that microbial communities are phylogenetically and functionally more overdispersed in oxic waters, but clustered within the OMZ. These dispersion patterns suggest that community assembly drivers (e.g., competition, environmental filtering) vary strikingly across the oxygen gradient. To understand the generality of our findings, we compared OMZ results to two marine depth gradients in subtropical oligotrophic sites and found that the oligotrophic sites did not display similar patterns, likely reflecting unique features found in the OMZ. Finally, we discuss how our results may relate to niche theory, diversity-energy relationships and stress gradients.


Molecular Biology and Evolution | 2008

Lateral Symbiont Acquisition in a Maternally Transmitted Chemosynthetic Clam Endosymbiosis

Frank J. Stewart; Curtis R. Young; Colleen M. Cavanaugh

Deep-sea clams of the family Vesicomyidae live in symbiosis with intracellular chemosynthetic bacteria. These symbionts are transmitted maternally (vertically) between host generations and should therefore show a pattern of genetic variation paralleling that of the cotransmitted host mitochondrion. However, instances of lateral (nonvertical) symbiont acquisition could still occur, thereby decoupling symbiont and mitochondrial phylogenies. Here, we provide the first evidence against strict maternal cotransmission of symbiont and mitochondrial genomes in vesicomyids. Analysis of Vesicomya sp. mt-II clams from hydrothermal vents on the Juan de Fuca Ridge (northeastern Pacific) revealed a symbiont phylotype (designated symB(VII)) highly divergent from previously described symbionts of the same host lineage. SymB(VII)-hosting clams occurred at low frequency (0.02) relative to individuals hosting the dominant symbiont phylotype. Phylogenetic analysis of 16S rRNA genes from a wide range of symbionts and free-living bacteria clustered symB(VII) within the monophyletic clade of vesicomyid symbionts. Further analysis of 3 symbiont loci (23S, dnaK, and soxA) across 11 vesicomyid taxa unambiguously placed symB(VII) as sister to the symbiont of a distantly related host lineage, Vesicomya sp. from the Mid-Atlantic Ridge (98.9% median nucleotide identity across protein-coding loci). Using likelihood and Bayesian model discrimination methods, we rejected the strict maternal cotransmission hypothesis by showing a significant decoupling of symbiont and host mitochondrial (COI and mt16S genes) phylogenies. Indeed, decoupling occurred even when symB(VII) was excluded from phylogenetic reconstructions, suggesting a history of host switching in this group. Together, the data indicate a history of lateral symbiont transfer in vesicomyids, with symB(VII) being the most conspicuous example. Interpreted alongside previous studies of the vesicomyid symbiosis, these results suggest a mixed mode of symbiont transmission characterized by predominantly vertical transmission punctuated with instances of lateral symbiont acquisition. Lateral acquisition may facilitate the exchange of genetic material (recombination) among divergent symbiont lineages, rendering the evolutionary history of vesicomyid symbiont genomes much more complex than previously thought.

Collaboration


Dive into the Frank J. Stewart's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Edward F. DeLong

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Bo Thamdrup

University of Southern Denmark

View shared research outputs
Top Co-Authors

Avatar

Neha Sarode

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Cory C. Padilla

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Sangita Ganesh

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Laura A. Bristow

University of Southern Denmark

View shared research outputs
Top Co-Authors

Avatar

Jennifer B. Glass

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Zoe A. Pratte

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Donald E. Canfield

University of Southern Denmark

View shared research outputs
Researchain Logo
Decentralizing Knowledge