Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Frank J. T. Staal is active.

Publication


Featured researches published by Frank J. T. Staal.


Journal of Clinical Investigation | 2008

Insertional mutagenesis combined with acquired somatic mutations causes leukemogenesis following gene therapy of SCID-X1 patients

Steven J. Howe; Marc R. Mansour; Kerstin Schwarzwaelder; Cynthia C. Bartholomae; Michael Hubank; Helena Kempski; Martijn H. Brugman; Karin Pike-Overzet; Stephen Chatters; Dick de Ridder; Kimberly Gilmour; Stuart Adams; Susannah I Thornhill; Kathryn L. Parsley; Frank J. T. Staal; Rosemary E. Gale; David C. Linch; Jinhua Bayford; Lucie Brown; Michelle Quaye; Christine Kinnon; Philip Ancliff; David Webb; Manfred Schmidt; Christof von Kalle; H. Bobby Gaspar; Adrian J. Thrasher

X-linked SCID (SCID-X1) is amenable to correction by gene therapy using conventional gammaretroviral vectors. Here, we describe the occurrence of clonal T cell acute lymphoblastic leukemia (T-ALL) promoted by insertional mutagenesis in a completed gene therapy trial of 10 SCID-X1 patients. Integration of the vector in an antisense orientation 35 kb upstream of the protooncogene LIM domain only 2 (LMO2) caused overexpression of LMO2 in the leukemic clone. However, leukemogenesis was likely precipitated by the acquisition of other genetic abnormalities unrelated to vector insertion, including a gain-of-function mutation in NOTCH1, deletion of the tumor suppressor gene locus cyclin-dependent kinase 2A (CDKN2A), and translocation of the TCR-beta region to the STIL-TAL1 locus. These findings highlight a general toxicity of endogenous gammaretroviral enhancer elements and also identify a combinatorial process during leukemic evolution that will be important for risk stratification and for future protocol design.


Nature Reviews Immunology | 2008

WNT signalling in the immune system: WNT is spreading its wings

Frank J. T. Staal; Tiago C. Luis; Machteld M. Tiemessen

WNT proteins are secreted morphogens that are required for basic developmental processes, such as cell-fate specification, progenitor-cell proliferation and the control of asymmetric cell division, in many different species and organs. In blood and immune cells, WNT signalling controls the proliferation of progenitor cells and might also affect the cell-fate decisions of stem cells. Recent studies indicate that WNT proteins also regulate effector T-cell development, regulatory T-cell activation and dendritic-cell maturation. WNT signalling seems to function as a universal mechanism in leukocytes to establish a pool of undifferentiated cells for further selection, effector-cell maturation and terminal differentiation. WNT signalling is therefore subject to strict molecular control, and dysregulated WNT signalling is implicated in the development of haematological malignancies.


EMBO Reports | 2002

Wnt signals are transmitted through N‐terminally dephosphorylated β‐catenin

Frank J. T. Staal; Mascha van Noort; Ger J. Strous; Hans Clevers

β‐catenin mediates Wnt signaling by acting as the essential co‐activator for TCF transcription factors. Wnt signaling increases the half‐life and therefore the absolute level of β‐catenin in responding cells. The current model states that these changes in β‐catenin stability set the threshold for Wnt signaling. However, we find that pharmacological inhibition of proteasome activity by ALLN leads to accumulation of cytosolic β‐catenin but not to increased TCF‐mediated transcription. In addition, in temperature‐sensitive ubiquitylation mutant CHO cells inhibition of ubiquitylation increases β‐catenin levels, but does not induce transcriptional activation of TCF reporter genes. Using an antibody specific for β‐catenin dephosphorylated at residues Ser37 and Thr41, we show that Wnt signals specifically increase the levels of dephosphorylated β‐catenin, whereas ALLN does not. We conclude that changes in the phosphorylation status of the N‐terminus of β‐catenin that occur upon Wnt signaling independently affect the signaling properties and half‐life of β‐catenin. Hence, Wnt signals are transduced via N‐terminally dephosphorylated β‐catenin.


Nature Reviews Immunology | 2005

WNT signalling and haematopoiesis: a WNT–WNT situation

Frank J. T. Staal; Hans Clevers

The evolutionarily conserved WNT-signalling pathway has pivotal roles during the development of many organ systems, and dysregulated WNT signalling is a key factor in the initiation of various tumours. Recent studies have implicated a role for WNT signal transduction at several stages of lymphocyte development and in the self-renewal of haematopoietic stem cells. Here, we outline new insights into the WNT-signalling pathway, review its role in the self-renewal of haematopoietic stem cells and in the development of T and B cells, and discuss controversies and future developments with regard to WNT signalling in the thymus.


Journal of Experimental Medicine | 2005

New insights on human T cell development by quantitative T cell receptor gene rearrangement studies and gene expression profiling

Willem A. Dik; Karin Pike-Overzet; Floor Weerkamp; Dick de Ridder; Edwin F. E. de Haas; Miranda R. M. Baert; Peter J. van der Spek; Esther E.L. Koster; Marcel J. T. Reinders; Jacques J.M. van Dongen; Anton W. Langerak; Frank J. T. Staal

To gain more insight into initiation and regulation of T cell receptor (TCR) gene rearrangement during human T cell development, we analyzed TCR gene rearrangements by quantitative PCR analysis in nine consecutive T cell developmental stages, including CD34+ lin− cord blood cells as a reference. The same stages were used for gene expression profiling using DNA microarrays. We show that TCR loci rearrange in a highly ordered way (TCRD-TCRG-TCRB-TCRA) and that the initiating Dδ2-Dδ3 rearrangement occurs at the most immature CD34+CD38−CD1a− stage. TCRB rearrangement starts at the CD34+CD38+CD1a− stage and complete in-frame TCRB rearrangements were first detected in the immature single positive stage. TCRB rearrangement data together with the PTCRA (pTα) expression pattern show that human TCRβ-selection occurs at the CD34+CD38+CD1a+ stage. By combining the TCR rearrangement data with gene expression data, we identified candidate factors for the initiation/regulation of TCR recombination. Our data demonstrate that a number of key events occur earlier than assumed previously; therefore, human T cell development is much more similar to murine T cell development than reported before.


Archives of General Psychiatry | 2008

A discriminating messenger RNA signature for bipolar disorder formed by an aberrant expression of inflammatory genes in monocytes.

Roos C. Padmos; Manon Hillegers; Esther M. Knijff; Ronald Vonk; Anne P. Bouvy; Frank J. T. Staal; Dick de Ridder; Willem A. Nolen; Hemmo A. Drexhage

CONTEXT Mood disturbances are associated with an activated inflammatory response system. OBJECTIVE To identify a discriminating and coherent expression pattern of proinflammatory genes in monocytes of patients with bipolar disorder. DESIGN A quantitative polymerase chain reaction (Q-PCR) case-control gene expression study on purified monocytes of bipolar patients, the offspring of bipolar patients, and healthy control participants after having selected 22 discriminating inflammatory genes using whole genome analyses. SETTING Academic research setting in The Netherlands. PATIENTS Forty-two bipolar patients with 25 healthy controls, 54 offspring of a bipolar parent (13 had a mood disorder and 3 developed one during follow-up), and 70 healthy children underwent Q-PCR. MAIN OUTCOME MEASURE Inflammatory gene expression levels in monocytes. RESULTS We detected in the monocytes of bipolar patients a coherent mutually correlating set (signature) of 19 aberrantly expressed (P < .01) messenger RNAs of inflammatory (PDE4B, IL1B, IL6, TNF, TNFAIP3, PTGS2, and PTX3), trafficking (CCL2, CCL7, CCL20, CXCL2, CCR2, and CDC42), survival (BCL2A1 and EMP1), and mitogen-activated protein kinase pathway (MAPK6, DUSP2, NAB2, and ATF3) genes. Twenty-three of 42 bipolar patients (55%) had a positive signature test result vs 7 of 38 healthy controls (18%) (positive test result: positivity for PDE4B, ie, a messenger RNA 1 SD higher than the mean level found in healthy controls, plus 25% of the other genes with similar positive findings). Positive signature test results were also present in 11 of 13 offspring with a mood disorder (85%), 3 of 3 offspring developing a mood disorder (100%), and 17 of 38 euthymic offspring (45%) vs 13 of 70 healthy children (19%). Lithium carbonate and antipsychotic treatment downregulated the gene expression of most inflammatory genes. CONCLUSIONS The monocytes of a large proportion of bipolar patients and offspring of bipolar parents showed an inflammatory gene expression signature. This coherent set of genes opens new avenues for biomarker development with possibilities for disease prediction in individuals genetically at risk and for the subclassification of bipolar patients who could possibly benefit from anti-inflammatory treatment.


Journal of Clinical Investigation | 2007

Vector integration is nonrandom and clustered and influences the fate of lymphopoiesis in SCID-X1 gene therapy

Annette Deichmann; Salima Hacein-Bey-Abina; Manfred Schmidt; Alexandrine Garrigue; Martijn H. Brugman; Jingqiong Hu; Hanno Glimm; Gabor Gyapay; Bernard Prum; Christopher C. Fraser; Nicolas Fischer; Kerstin Schwarzwaelder; Maria Luise Siegler; Dick de Ridder; Karin Pike-Overzet; Steven J. Howe; Adrian J. Thrasher; Gerard Wagemaker; Ulrich Abel; Frank J. T. Staal; Eric Delabesse; Jean Luc Villeval; Bruce J. Aronow; Christophe Hue; Claudia Prinz; Manuela Wissler; Chuck Klanke; Jean Weissenbach; Ian E. Alexander; Alain Fischer

Recent reports have challenged the notion that retroviruses and retroviral vectors integrate randomly into the host genome. These reports pointed to a strong bias toward integration in and near gene coding regions and, for gammaretroviral vectors, around transcription start sites. Here, we report the results obtained from a large-scale mapping of 572 retroviral integration sites (RISs) isolated from cells of 9 patients with X-linked SCID (SCID-X1) treated with a retrovirus-based gene therapy protocol. Our data showed that two-thirds of insertions occurred in or very near to genes, of which more than half were highly expressed in CD34(+) progenitor cells. Strikingly, one-fourth of all integrations were clustered as common integration sites (CISs). The highly significant incidence of CISs in circulating T cells and the nature of their locations indicate that insertion in many gene loci has an influence on cell engraftment, survival, and proliferation. Beyond the observed cases of insertional mutagenesis in 3 patients, these data help to elucidate the relationship between vector insertion and long-term in vivo selection of transduced cells in human patients with SCID-X1.


Cancer Cell | 2011

Integrated Transcript and Genome Analyses Reveal NKX2-1 and MEF2C as Potential Oncogenes in T Cell Acute Lymphoblastic Leukemia

Irene Homminga; Rob Pieters; Anton W. Langerak; Johan de Rooi; Andrew Stubbs; Monique Verstegen; Maartje Vuerhard; Jessica Buijs-Gladdines; Clarissa Kooi; Petra Klous; Pieter Van Vlierberghe; Adolfo A. Ferrando; Jean Michel Cayuela; Brenda Verhaaf; H. Berna Beverloo; Martin A. Horstmann; Valerie de Haas; Anna-Sophia Wiekmeijer; Karin Pike-Overzet; Frank J. T. Staal; Wouter de Laat; Jean Soulier; François Sigaux; Jules P.P. Meijerink

To identify oncogenic pathways in T cell acute lymphoblastic leukemia (T-ALL), we combined expression profiling of 117 pediatric patient samples and detailed molecular-cytogenetic analyses including the Chromosome Conformation Capture on Chip (4C) method. Two T-ALL subtypes were identified that lacked rearrangements of known oncogenes. One subtype associated with cortical arrest, expression of cell cycle genes, and ectopic NKX2-1 or NKX2-2 expression for which rearrangements were identified. The second subtype associated with immature T cell development and high expression of the MEF2C transcription factor as consequence of rearrangements of MEF2C, transcription factors that target MEF2C, or MEF2C-associated cofactors. We propose NKX2-1, NKX2-2, and MEF2C as T-ALL oncogenes that are activated by various rearrangements.


Journal of Clinical Investigation | 2007

Gammaretrovirus-mediated correction of SCID-X1 is associated with skewed vector integration site distribution in vivo

Kerstin Schwarzwaelder; Steven J. Howe; Manfred Schmidt; Martijn H. Brugman; Annette Deichmann; Hanno Glimm; Sonja Schmidt; Claudia Prinz; Manuela Wissler; Douglas King; Fang Zhang; Kathryn L. Parsley; Kimberly Gilmour; Joanna Sinclair; Jinhua Bayford; Rachel Peraj; Karin Pike-Overzet; Frank J. T. Staal; Dick de Ridder; Christine Kinnon; Ulrich Abel; Gerard Wagemaker; H. Bobby Gaspar; Adrian J. Thrasher; Christof von Kalle

We treated 10 children with X-linked SCID (SCID-X1) using gammaretrovirus-mediated gene transfer. Those with sufficient follow-up were found to have recovered substantial immunity in the absence of any serious adverse events up to 5 years after treatment. To determine the influence of vector integration on lymphoid reconstitution, we compared retroviral integration sites (RISs) from peripheral blood CD3(+) T lymphocytes of 5 patients taken between 9 and 30 months after transplantation with transduced CD34(+) progenitor cells derived from 1 further patient and 1 healthy donor. Integration occurred preferentially in gene regions on either side of transcription start sites, was clustered, and correlated with the expression level in CD34(+) progenitors during transduction. In contrast to those in CD34(+) cells, RISs recovered from engrafted CD3(+) T cells were significantly overrepresented within or near genes encoding proteins with kinase or transferase activity or involved in phosphorus metabolism. Although gross patterns of gene expression were unchanged in transduced cells, the divergence of RIS target frequency between transduced progenitor cells and post-thymic T lymphocytes indicates that vector integration influences cell survival, engraftment, or proliferation.


European Journal of Immunology | 2001

Wnt signaling is required for thymocyte development and activates Tcf-1 mediated transcription

Frank J. T. Staal; Jan Meeldijk; Petra Moerer; Philippe Jay; Barbara C. M. van de Weerdt; Seppo Vainio; Garry P. Nolan; Hans Clevers

T cell factor / lymphocyte enhancer factor (Tcf / Lef) transcription factors complex with the transcriptional co‐activator β‐catenin to transduce Wnt signals in a variety of developmental systems. The prototypic family member Tcf‐1 is highly expressed in T lineage cells. Tcf1– / – mice are defective in cell cycling of early thymocyte stages. Here, we show that the interaction of β‐catenin with Tcf‐1 is required for full thymocyte development. This interaction may be established by signals mediated by Wnt1 and Wnt4, leading to increased Tcf‐dependent transcriptional activity in thymocytes, as demonstrated in Tcf‐LacZ reporter mice. Transduction of fetal thymocytes with Wnt1 and Wnt4 results in increased survival in an in vitro cell culture system. Retroviral expression of soluble Wnt receptor mutants that block Wnt signaling inhibits thymocyte development. These results imply an important role for the Wnt cascade in thymocyte development.

Collaboration


Dive into the Frank J. T. Staal's collaboration.

Top Co-Authors

Avatar

Karin Pike-Overzet

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martijn H. Brugman

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Dick de Ridder

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Floor Weerkamp

Erasmus University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Anton W. Langerak

Erasmus University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Miranda R. M. Baert

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Gerard Wagemaker

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

Hans Clevers

Royal Netherlands Academy of Arts and Sciences

View shared research outputs
Top Co-Authors

Avatar

Edwin F. E. de Haas

Erasmus University Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge