Frank L. Rice
Albany Medical College
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Frank L. Rice.
Neuron | 2005
Mark J. Zylka; Frank L. Rice; David J. Anderson
The brain receives sensory input from diverse peripheral tissues, including the skin, the bodys largest sensory organ. Using genetically encoded axonal tracers expressed from the Mrgprd locus, we identify a subpopulation of nonpeptidergic, nociceptive neurons that project exclusively to the skin, and to no other peripheral tissue examined. Surprisingly, Mrgprd(+) innervation is restricted to the epidermis and absent from specialized sensory structures. Furthermore, Mrgprd(+) fibers terminate in a specific layer of the epidermis, the stratum granulosum. This termination zone is distinct from that innervated by most CGRP(+) neurons, revealing that peptidergic and nonpeptidergic epidermal innervation is spatially segregated. The central projections deriving from these distinct epidermal innervation zones terminate in adjacent laminae in the dorsal spinal cord. Thus, afferent input from different layers of the epidermis is conveyed by topographically segregated sensory circuits, suggesting that at least some aspects of sensory information processing may be organized along labeled lines.
Neuron | 2000
Tushar D. Patel; Alana Jackman; Frank L. Rice; Jan Kucera; William D. Snider
The neurotrophin survival dependence of peripheral neurons in vitro is regulated by the proapoptotic BCL-2 homolog BAX. To study peripheral neuron development in the absence of neurotrophin signaling, we have generated mice that are double null for BAX and nerve growth factor (NGF), and BAX and the NGF receptor TrkA. All dorsal root ganglion (DRG) neurons that normally die in the absence of NGF/TrkA signaling survive if BAX is also eliminated. These neurons extend axons through the dorsal roots and collateral branches into the dorsal horn. In contrast, superficial cutaneous innervation is absent. Furthermore, rescued sensory neurons fail to express biochemical markers characteristic of the nociceptive phenotype. These findings establish that NGF/TrkA signaling regulates peripheral target field innervation and is required for the full phenotypic differentiation of sensory neurons.
Neuron | 2010
Sarah E. Ross; Alan R. Mardinly; Alejandra E. McCord; Jonathan Zurawski; Sonia Cohen; Cynthia Jung; Linda Hu; Stephanie I. Mok; Anar Shah; Erin Savner; Christos Tolias; Roman Corfas; Suzhen Chen; Perrine Inquimbert; Yi Xu; Roderick R. McInnes; Frank L. Rice; Gabriel Corfas; Qiufu Ma; Clifford J. Woolf; Michael E. Greenberg
Itch is the least well understood of all the somatic senses, and the neural circuits that underlie this sensation are poorly defined. Here we show that the atonal-related transcription factor Bhlhb5 is transiently expressed in the dorsal horn of the developing spinal cord and appears to play a role in the formation and regulation of pruritic (itch) circuits. Mice lacking Bhlhb5 develop self-inflicted skin lesions and show significantly enhanced scratching responses to pruritic agents. Through genetic fate-mapping and conditional ablation, we provide evidence that the pruritic phenotype in Bhlhb5 mutants is due to selective loss of a subset of inhibitory interneurons in the dorsal horn. Our findings suggest that Bhlhb5 is required for the survival of a specific population of inhibitory interneurons that regulate pruritus, and provide evidence that the loss of inhibitory synaptic input results in abnormal itch.
Pain | 2006
Phillip J. Albrecht; Scott Hines; Elon Eisenberg; Dorit Pud; Deborah Finlay; M. Kari Connolly; Michel Paré; Gudarz Davar; Frank L. Rice
Abstract Complex regional pain syndromes (CRPS, type I and type II) are devastating conditions that can occur following soft tissue (CRPS type I) or nerve (CRPS type II) injury. CRPS type I, also known as reflex sympathetic dystrophy, presents in patients lacking a well‐defined nerve lesion, and has been questioned as to whether or not it is a true neuropathic condition with an organic basis. As described here, glabrous and hairy skin samples from the amputated upper and lower extremity from two CRPS type I diagnosed patients were processed for double‐label immunofluorescence using a battery of antibodies directed against neural‐related proteins and mediators of nociceptive sensory function. In CRPS affected skin, several neuropathologic alterations were detected, including: (1) the presence of numerous abnormal thin caliber NF‐positive/MBP‐negative axons innervating hair follicles; (2) a decrease in epidermal, sweat gland, and vascular innervation; (3) a loss of CGRP expression on remaining innervation to vasculature and sweat glands; (4) an inappropriate expression of NPY on innervation to superficial arterioles and sweat glands; and (5) a loss of vascular endothelial integrity and extraordinary vascular hypertrophy. The results are evidence of widespread cutaneous neuropathologic changes. Importantly, in these CRPS type I patients, the myriad of clinical symptoms observed had detectable neuropathologic correlates.
Molecular Pain | 2005
Derek C. Molliver; David Immke; Leonardo Fierro; Michel Paré; Frank L. Rice; Edwin W. McCleskey
BackgroundASIC3, the most sensitive of the acid-sensing ion channels, depolarizes certain rat sensory neurons when lactic acid appears in the extracellular medium. Two functions have been proposed for it: 1) ASIC3 might trigger ischemic pain in heart and muscle; 2) it might contribute to some forms of touch mechanosensation. Here, we used immunocytochemistry, retrograde labelling, and electrophysiology to ask whether the distribution of ASIC3 in rat sensory neurons is consistent with either of these hypotheses.ResultsLess than half (40%) of dorsal root ganglion sensory neurons react with anti-ASIC3, and the population is heterogeneous. They vary widely in cell diameter and express different growth factor receptors: 68% express TrkA, the receptor for nerve growth factor, and 25% express TrkC, the NT3 growth factor receptor. Consistent with a role in muscle nociception, small (<25 μm) sensory neurons that innervate muscle are more likely to express ASIC3 than those that innervate skin (51% of small muscle afferents vs. 28% of small skin afferents). Over 80% of ASIC3+ muscle afferents co-express CGRP (a vasodilatory peptide). Remarkably few (9%) ASIC3+ cells express P2X3 receptors (an ATP-gated ion channel), whereas 31% express TRPV1 (the noxious heat and capsaicin-activated ion channel also known as VR1). ASIC3+/CGRP+ sensory nerve endings were observed on muscle arterioles, the blood vessels that control vascular resistance; like the cell bodies, the endings are P2X3- and can be TRPV1+. The TrkC+/ASIC3+ cell bodies are uniformly large, possibly consistent with non-nociceptive mechanosensation. They are not proprioceptors because they fail two other tests: ASIC3+ cells do not express parvalbumin and they are absent from the mesencephalic trigeminal nucleus.ConclusionOur data indicates that: 1) ASIC3 is expressed in a restricted population of nociceptors and probably in some non-nociceptors; 2) co-expression of ASIC3 and CGRP, and the absence of P2X3, are distinguishing properties of a class of sensory neurons, some of which innervate blood vessels. We suggest that these latter afferents may be muscle metaboreceptors, neurons that sense the metabolic state of muscle and can trigger pain when there is insufficient oxygen.
The Journal of Comparative Neurology | 2002
Kenzo Kumamoto; Tadao Matsuura; Joseph E. Mazurkiewicz; Frank L. Rice
Our confocal three‐dimensional analyses revealed substantial differences in the innervation to vibrissal follicle‐sinus complexes (FSCs) in the rat and cat. This is the first study using anti‐protein gene product 9.5 (PGP9.5) immunolabeling and confocal microscopy on thick sections to examine systematically the terminal arborizations of the various FSC endings and to compare them between two species, the rat and the cat, that have similar‐appearing FSCs but different exploratory behaviors, such as existence or absence of whisking. At least eight distinct endings were clearly discriminated three dimensionally in this study: 1) Merkel endings at the rete ridge collar, 2) circumferentially oriented lanceolate endings, 3) Merkel endings at the level of the ring sinus, 4) longitudinally oriented lanceolate endings, 5) club‐like ringwulst endings, 6) reticular endings, 7) spiny endings, and 8) encapsulated endings. Of particular contrast, each nerve fiber that innervates Merkel cells at the level of the ring sinus in the rat usually terminates as a single, relatively small cluster of endings, whereas in the cat they terminate en passant as several large clusters of endings. Also, individual arbors of reticular endings in the rat ramify parallel to the vibrissae and distribute over wide, overlapping territories, whereas those in the cat ramify perpendicular and terminate in tightly circumscribed territories. Otherwise, the inner conical body of rat FSCs contains en passant, circumferentially oriented lanceolate endings that are lacking in the cat, whereas the cavernous sinus of the cat has en passant corpuscular endings that are lacking in the rat. Surprisingly, the one type of innervation that is the most similar in both species is a major set of simple, club‐like endings, located at the attachment of the ringwulst, that had not previously been recognized as a morphologically unique type of innervation. Although the basic structure of the FSCs is similar in the rat and cat, the numerous differences in innervation suggest that these species would have different tactile capabilities and perceptions possibly related to their different vibrissa‐related exploratory behaviors. J. Comp. Neurol. 449:103–119, 2002.
Nature Neuroscience | 2007
Qin Liu; Sophia Vrontou; Frank L. Rice; Mark J. Zylka; Xinzhong Dong; David J. Anderson
C-fiber tactile afferents are a subpopulation of unmyelinated cutaneous sensory neurons activated by gentle stroking. Using a genetically encoded tracer, we found that Mas-related G protein–coupled receptor B4 marks a rare subpopulation of unmyelinated, nonpeptidergic sensory fibers that exclusively innervate hairy skin. These fibers terminate in large arborizations similar in size and distribution to C-fiber tactile afferent receptive fields, suggesting that MrgprB4 may provide genetic access to these elusive neurons in mice.
The Journal of Comparative Neurology | 1997
Frank L. Rice; Bengt T. Fundin; Jan Arvidsson; Håkan Aldskogius; Olle Johansson
The innervation of the vibrissal follicle sinus complexes (FSCs) in the mystacial pad of the rat was examined by lectin binding histofluorescence with the B subunit of Griffonia simplicifolia (GSA) and by immunofluorescence with a wide variety of antibodies for neuronal related structural proteins, enzymes, and peptides. Only anti‐protein gene product 9.5 labeled all sets of innervation. Several types of mechanoreceptors were distributed to specific different targets by medium to large caliber myelinated axons. All were positive for 200 kDa neurofilament subunit, peripherin, and carbonic anhydrase. Their endings expressed synaptophysin. Labeling for the 160 kDa neurofilament subunit, calbindin, and parvalbumin varied. Anti‐Schwann cell protein S100 was completely co‐extensive with the axons, terminal arbors, and endings of the mechanoreceptor afferents including Merkel innervation. At least 15 different sets of unmyelinated innervation were evident based upon distribution and labeling characteristics. They consisted of four basic types: 1) peptidergic; 2) GSA binding; 3) peptidergic and GSA binding; and 4) nonpeptidergic and GSA negative (peptide‐/GSA‐). Previous studies had not revealed that several major sets of unmyelinated innervation were peptide‐/GSA‐. The unmyelinated innervation had detectable peripherin but not 160 kDa or 200 kDa neurofilament subunits. GSA‐positive axons uniquely lacked anti‐S100 immunoreactivity. The dense circumferentially oriented unmyelinated innervation of the inner conical body contained major sets of peptide‐/GSA‐ and GSA innervation as well as a smaller peptidergic GSA component. A small contingent of sympathetic and possibly parasympathetic innervation was affiliated with microvasculature in the FSCs. This study confirms and refutes some previous hypotheses about biochemical and morphological relationships between peripheral innervation and sensory ganglion cells. J. Comp. Neurol. 385:149–184, 1997.
Pain | 2008
Peng Zhao; Travis Barr; Quanzhi Hou; Sulayman D. Dib-Hajj; Joel A. Black; Phillip J. Albrecht; Karin L. Petersen; Elon Eisenberg; James Wymer; Frank L. Rice; Stephen G. Waxman
Abstract Keratinocytes are implicated in sensory transduction and can influence nociception, but whether these contribute to chronic pain is not known. In neurons, voltage‐gated sodium channels (Nav) are involved in neuropathic pain and are activated by depolarization. Since keratinocytes can also show changes in membrane potential, we used RT‐PCR, in situ hybridization, and immunohistochemistry to investigate the expression of sodium channels in these cells. Nav1.1, Nav1.6, and Nav1.8 were localized within keratinocytes in rat epidermis. In addition, sodium channels contribute to the release of ATP from rat keratinocytes in response to increased [K+]o, implicating sodium channels in keratinocyte ligand release and nociception. To examine whether keratinocytes may contribute to human pain states, we analyzed sodium channel expression in human skin biopsies from subjects with complex regional pain syndrome Type 1 (CRPS) and post‐herpetic neuralgia (PHN) using immunohistochemistry. Control skin exhibited immunolabeling for Nav1.5, Nav1.6 and Nav1.7. In contrast, painful skin from CRPS and PHN subjects displayed Nav1.1, Nav1.2, and Nav1.8 immunolabeling, in addition to substantially increased signal for Nav1.5, Nav1.6, Nav1.7. These observations lead us to propose that pathological increases in keratinocyte sodium channel expression may contribute to pain by increasing epidermal ATP release, resulting in excessive activation of P2X receptors on primary sensory axons. Consistent with this hypothesis, animal models of neuropathic pain exhibit increases in subcutaneous ATP release and activity of primary sensory neurons, and peripheral administration of P2X antagonists has been shown to reduce neuropathic pain in humans.
The Journal of Comparative Neurology | 2002
Michel Paré; Allan M. Smith; Frank L. Rice
Recent electrophysiological studies demonstrated that neurons in the somatosensory cortex of monkeys respond to tangential forces applied to glabrous skin. To unravel the peripheral basis for this cortical response, we determined the distribution of presumptive low‐threshold mechanoreceptors innervating the distal finger pads of monkeys. Endings were reconstructed in immunolabeled serial sections imaged by epifluorescence and confocal microscopy. Although classically implicated as cutaneous stretch receptors, no Ruffini corpuscles were found in the glabrous skin. Ruffini‐like endings were only detected at the base of the finger nails. Pacinian corpuscles were sparsely distributed in the deep dermis. Meissner corpuscles (MCs) in dermal papillary ridges had a comparably high density in the thumb, index, and fifth fingers. Each MC was innervated by several large‐caliber axons. Within the limits of our reconstructions, some of these axons terminated in only one MC, whereas others innervated several MCs. Merkel endings covered about 80% of the base of the intermediate epidermal ridges that form the pattern of fingerprints. In some cases, the distal tip of a Merkel‐related axon gave rise to a several terminal branches that supplied endings to tightly circumscribed (30–70 μm) clusters of Merkel cells. In other cases, the nodes of axons gave rise to en passant branches that formed extended chains of endings among Merkel cells spread over territories up to 300 μm long. Based on their relatively diffuse distributions, the axons that innervate multiple MCs or the axons with en passant Merkel terminations seem most suited to transduce tangential forces. J. Comp. Neurol. 445:347–359, 2002.