Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Frank Le Foll is active.

Publication


Featured researches published by Frank Le Foll.


Journal of Translational Medicine | 2013

Preferential transfer of mitochondria from endothelial to cancer cells through tunneling nanotubes modulates chemoresistance

Jennifer Pasquier; Bella S. Guerrouahen; Hamda Al Thawadi; Pegah Ghiabi; Mahtab Maleki; Nadine Abu-Kaoud; Arthur Jacob; Massoud Mirshahi; Ludovic Galas; Shahin Rafii; Frank Le Foll; Arash Rafii

Our vision of cancer has changed during the past decades. Indeed tumors are now perceived as complex entities where tumoral and stromal components interact closely. Among the different elements of tumor stroma the cellular component play a primordial role. Bone Marrow derived mesenchymal cells (MSCs) are attracted to tumor sites and support tumor growth. Endothelial cells (ECs) play a major role in angiogenesis. While the literature documents many aspects of the cross talk between stromal and cancer cells, the role of direct hetero-cellular contact is not clearly established. Recently, Tunneling nanotubes (TnTs) have been shown to support cell-to-cell transfers of plasma membrane components, cytosolic molecules and organelles within cell lines. Herein, we have investigated the formation of heterocellular TnTs between stromal (MSCs and ECs) and cancer cells. We demonstrate that TnTs occur between different cancer cells, stromal cells and cancer-stromal cell lines. We showed that TnTs-like structure occurred in 3D anchorage independent spheroids and also in tumor explant cultures. In our culture condition, TnTs formation occurred after large membrane adhesion. We showed that intercellular transfers of cytoplasmic content occurred similarly between cancer cells and MSCs or ECs, but we highlighted that the exchange of mitochondria occurred preferentially between endothelial cells and cancer cells. We illustrated that the cancer cells acquiring mitochondria displayed chemoresistance. Our results illustrate the perfusion-independent role of the endothelium by showing a direct endothelial to cancer cell mitochondrial exchange associated to phenotypic modulation. This supports another role of the endothelium in the constitution of the metastatic niche.


Biology Direct | 2011

Consequences of cell-to-cell P-glycoprotein transfer on acquired multidrug resistance in breast cancer: a cell population dynamics model

Jennifer Pasquier; Pierre Magal; Céline Boulangé-Lecomte; Glenn F. Webb; Frank Le Foll

BackgroundCancer is a proliferation disease affecting a genetically unstable cell population, in which molecular alterations can be somatically inherited by genetic, epigenetic or extragenetic transmission processes, leading to a cooperation of neoplastic cells within tumoural tissue. The efflux protein P-glycoprotein (P-gp) is overexpressed in many cancer cells and has known capacity to confer multidrug resistance to cytotoxic therapies. Recently, cell-to-cell P-gp transfers have been shown. Herein, we combine experimental evidence and a mathematical model to examine the consequences of an intercellular P-gp trafficking in the extragenetic transfer of multidrug resistance from resistant to sensitive cell subpopulations.Methodology and Principal FindingsWe report cell-to-cell transfers of functional P-gp in co-cultures of a P-gp overexpressing human breast cancer MCF-7 cell variant, selected for its resistance towards doxorubicin, with the parental sensitive cell line. We found that P-gp as well as efflux activity distribution are progressively reorganized over time in co-cultures analyzed by flow cytometry. A mathematical model based on a Boltzmann type integro-partial differential equation structured by a continuum variable corresponding to P-gp activity describes the cell populations in co-culture. The mathematical model elucidates the population elements in the experimental data, specifically, the initial proportions, the proliferative growth rates, and the transfer rates of P-gp in the sensitive and resistant subpopulations.ConclusionsWe confirmed cell-to-cell transfer of functional P-gp. The transfer process depends on the gradient of P-gp expression in the donor-recipient cell interactions, as they evolve over time. Extragenetically acquired drug resistance is an additional aptitude of neoplastic cells which has implications in the diagnostic value of P-gp expression and in the design of chemotherapy regimens.ReviewersThis article was reviewed by Leonid Hanin, Anna Marciniak-Czochra and Marek Kimmel.


Fish & Shellfish Immunology | 2010

Characterisation of Mytilus edulis hemocyte subpopulations by single cell time-lapse motility imaging.

Frank Le Foll; Damien Rioult; Sofiane Boussa; Jennifer Pasquier; Zeina Dagher; François Leboulenger

In bivalve molluscs, defence against pathogens mainly relies on fast tissue infiltration by immunocompetent hemocytes that migrate from circulating hemolymph to sites of infection, in order to deliver, in situ, an effective immune response. In the present work, we have investigated dynamics of hemocyte subpopulations motility by combining flow cytometry coupled to Coulter-type cell volume determination, Hoffman modulation contrast microscopy, time-lapse imaging and off-line analysis of cell shape changes. Our results revealed fast modifications of hemocyte aspect in vitro, with bidirectional transitions from spread outlines to condensed cell body morphologies, in the minute range. Amoeboid or non-amoeboid types of locomotion were observed, depending on the cell shapes and on the cell subtypes, with velocities reaching up to 30 mum min(-1). Correlations between motion profiles, Hemacolor staining and flow cytometry analysis on living cells help to propose a functional mussel hemocyte classification including the motile properties of these cells. In particular, basophils were shown to be involved in dynamic hemocyte-hemocyte interactions and in the constitution of aggregation cores. Physiological implications, in terms of immune response in organisms devoid of endothelium-closed vascular system, and potential applications of hemocyte motility studies for the development and the interpretation of experiments involving hemocytes in the field of marine ecotoxicology are discussed.


Mathematical Models and Methods in Applied Sciences | 2011

AN IN VITRO CELL POPULATION DYNAMICS MODEL INCORPORATING CELL SIZE, QUIESCENCE, AND CONTACT INHIBITION

Arnaud Ducrot; Frank Le Foll; Pierre Magal; Hideki Murakawa; Jennifer Pasquier; Glenn F. Webb

In this paper, we construct a model to describe the spatial motion of a monolayer of cells occupying a two-dimensional dish. By taking care of nonlocal contact inhibition, quiescence phenomenon, and the cell cycle, we derive porous media-like equation with nonlocal reaction terms. The first part of this paper is devoted to the construction of the model. In the second part we study the well-posedness of the model. We conclude the paper by presenting some numerical simulations of the model and we observe the formation of colonies.


Biology of the Cell | 2015

Structural and functional analysis of tunneling nanotubes (TnTs) using gCW STED and gconfocal approaches

Magalie Bénard; Damien Schapman; Alexis Lebon; Baptiste Monterroso; Marine Bellenger; Frank Le Foll; Jennifer Pasquier; Hubert Vaudry; David Vaudry; Ludovic Galas

Tunneling nanotubes (TnTs) are thin plasma membrane bridges mediating transfers of materials and signals between cells. Heterogeneity of heterocellular and homocellular TnTs is largely described but ultrafine imaging of these light‐sensitive floating nanometric structures represents a real challenge in microscopy. We propose here imaging strategies designed to dissect structural and dynamic aspects of TnT formation and function in fixed or living PC12 cells.


Aquatic Toxicology | 2014

The multi-xenobiotic resistance (MXR) efflux activity in hemocytes of Mytilus edulis is mediated by an ATP binding cassette transporter of class C (ABCC) principally inducible in eosinophilic granulocytes

Damien Rioult; Jennifer Pasquier; Céline Boulangé-Lecomte; Agnès Poret; Imane Abbas; Matthieu Marin; Christophe Minier; Frank Le Foll

In marine and estuarine species, immunotoxic and/or immunomodulatory mechanisms are the crossroad of interactions between xenobiotics, microorganisms and physicochemical variations of the environment. In mussels, immunity relies exclusively on innate responses carried out by cells collectively called hemocytes and found in the open hemolymphatic circulatory system of these organisms. However, hemocytes do not form a homogenous population of immune cells since distinct subtypes of mussel blood cells can be distinguished by cytochemistry, flow cytometry or cell motility analysis. Previous studies have also shown that these cells are able to efflux xenobiotics by means of ATP binding cassette (ABC) transporter activities conferring a multixenobiotic resistance (MXR) phenotype. ABC transporters corresponding to vertebrate class B/P-glycoprotein (P-gp) and to class C/multidrug resistance related protein (MRP) are characterized in Mytilidae. Herein, we have investigated the relative contributions of ABCB- and ABCC-mediated efflux within the different hemocyte subpopulations of Mytilus edulis mussels, collected from areas differentially impacted by chemical contaminants in Normandy (France). RT-PCR analyses provide evidence for the presence of ABCB and ABCC transporters transcripts in hemocytes. Immunodetection of ABCB/P-gp with the monoclonal antibody UIC2 in living hemocytes revealed that expression was restricted to granular structures of spread cells. Efflux transporter activities, with calcein-AM as fluorescent probe, were measured by combining flow cytometry to accurate Coulter cell size measurements in order to get a cell-volume normalized fluorescence concentration. In these conditions, basal fluorescence levels were higher in hemocytes originating from Yport (control site) than in cells collected from the harbor of Le Havre, where mussels are more exposed to with persistent pollutants. By using specific ABCB/P-gp (verapamil, PSC833, zosuquidar) and ABCC/MRP (MK571) blockers, we show that MXR activity is only carried out by MRP-type transporters in M. edulis hemocytes. In addition, cell-type-gated flow cytometry and calculation of the MXR activity factor indicate that ABCC-efflux activity is higher and more inducible in eosinophilic granulocytes than in other hemocyte subtypes. We conclude that, in the hemocytes of M. edulis, MXR phenotype is mediated by an ABCC/MRP-type transporter activity principally supported by eosinophilic granulocytes. A role for ABC transporters in hemocyte migration is discussed.


Siam Journal on Applied Mathematics | 2009

Analysis of a Model for Transfer Phenomena in Biological Populations

Peter Hinow; Frank Le Foll; Pierre Magal; Glenn F. Webb

We study the problem of transfer in a population structured by a continuum variable corresponding to the quantity being transferred. The transfer of the quantity occurs between individuals according to specified rules. The model is of Boltzmann type with kernels corresponding to the transfer process. We prove that the transfer process preserves total mass of the transferred quantity and the solutions of the simple model converge weakly to Radon measures. We generalize the model by introducing proliferation of individuals and production and diffusion of the transferable quantity. It is shown that the generalized model admits a globally asymptotically stable steady state, provided that transfer is sufficiently small. We discuss an application of our model to cancer cell populations, in which individual cells exchange the surface protein P-glycoprotein, an important factor in acquired multidrug resistance against cancer chemotherapy.


Marine Environmental Research | 2002

Rhodamine exclusion activity in primary cultured turbot (Scophthalmus maximus) hepatocytes

Renaud Tutundjian; Christophe Minier; Frank Le Foll; François Leboulenger

Cellular detoxification by direct processes has been investigated in fish by studying the ability of hepatocytes prepared from juvenile aquarium-reared turbot (Scophthalmus maximus) to actively exclude the fluorescent dye rhodamine B (RB). Cell viability was studied by measurements of non-specific esterase activity using fluorescein diacetate. This revealed that turbot hepatocytes can be cultured for a few days with a viability decreasing to 38% after 24 h. The 24-h cultured cells have been used to study the rhodamine B exclusion activity using confocal laser microscopy. Hepatocytes accumulated the dye in a competitive manner with verapamil, thus suggesting that they express a transport system similar to the P-glycoprotein-mediated multixenobiotic resistance process. Incubation of cells with 1 microM RB and 20 microM verapamil led to a 26% increase of cellular fluorescence as compared to the accumulation in absence of competitor. Rhodamine B accumulated in the whole cytoplasm, with more concentrated areas that might correspond to the lysosomal compartment and the cell membrane.


Proteome | 2015

2-DE Mapping of the Blue Mussel Gill Proteome: The Usual Suspects Revisited

Béatrice Rocher; Florence Bultelle; Philippe Chan; Frank Le Foll; Julie Letendre; Tiphaine Monsinjon; Stéphanie Olivier; Romain Péden; Agnès Poret; David Vaudry; Thomas Knigge

The Blue Mussel (Mytilus edulis, L. 1758) is an ecologically important and commercially relevant bivalve. Because of its ability to bioconcentrate xenobiotics, it is also a widespread sentinel species for environmental pollution, which has been used in ecotoxicological studies for biomarker assessment. Consequently, numerous proteomics studies have been carried out in various research contexts using mussels of the genus Mytilus, which intended to improve our understanding of complex physiological processes related to reproduction, adaptation to physical stressors or shell formation and for biomarker discovery. Differential-display 2-DE proteomics relies on an extensive knowledge of the proteome with as many proteoforms identified as possible. To this end, extensive characterization of proteins was performed in order to increase our knowledge of the Mytilus gill proteome. On average, 700 spots were detected on 2-DE gels by colloidal blue staining, of which 122 different, non-redundant proteins comprising 203 proteoforms could be identified by tandem mass spectrometry. These proteins could be attributed to four major categories: (i) “metabolism”, including antioxidant defence and degradation of xenobiotics; (ii) “genetic information processing”, comprising transcription and translation as well as folding, sorting, repair and degradation; (iii) “cellular processes”, such as cell motility, transport and catabolism; (iv) “environmental information processing”, including signal transduction and signalling molecules and interaction. The role of cytoskeleton proteins, energetic metabolism, chaperones/stress proteins, protein trafficking and the proteasome are discussed in the light of the exigencies of the intertidal environment, leading to an enhanced stress response, as well as the structural and physiological particularities of the bivalve gill tissue.


BioMed Research International | 2013

P-Glycoprotein-Activity Measurements in Multidrug Resistant Cell Lines: Single-Cell versus Single-Well Population Fluorescence Methods

Jennifer Pasquier; Damien Rioult; Nadine Abu-Kaoud; Sabine Marie; Arash Rafii; Bella S. Guerrouahen; Frank Le Foll

Background. P-gp expression has been linked to the efflux of chemotherapeutic drugs in human cancers leading to multidrug resistance. Fluorescence techniques have been widely applied to measure the P-gp activity. In this paper, there is a comparison between the advantages of two fluorescence approaches of commonly available and affordable instruments: the microplate reader (MPR) and the flow cytometer to detect the P-gp efflux activity using calcein-AM. Results. The selectivity, sensibility, and reproducibility of the two methods have been defined. Our results showed that the MPR is more powerful for the detection of small inhibition, whereas the flow cytometry method is more reliable at higher concentrations of the inhibitors. We showed that to determine precisely the inhibition efficacy the flow cytometry is better; hence, to get the correct E max and EC50 values, we cannot only rely on the MPR. Conclusion. Both techniques can potentially be used extensively in the pharmaceutical industry for high-throughput drug screening and in biology laboratories for academic research, monitoring the P-gp efflux in specific assays.

Collaboration


Dive into the Frank Le Foll's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pierre Magal

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Arash Rafii

French Institute of Health and Medical Research

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge