Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Frank M. Mitloehner is active.

Publication


Featured researches published by Frank M. Mitloehner.


Poultry Science | 2011

Environmental impacts and sustainability of egg production systems

Hongwei Xin; Richard S. Gates; Angela R. Green; Frank M. Mitloehner; P. A. Moore; Christopher M. Wathes

As part of a systemic assessment toward social sustainability of egg production, we have reviewed current knowledge about the environmental impacts of egg production systems and identified topics requiring further research. Currently, we know that 1) high-rise cage houses generally have poorer air quality and emit more ammonia than manure belt (MB) cage houses; 2) manure removal frequency in MB houses greatly affects ammonia emissions; 3) emissions from manure storage are largely affected by storage conditions, including ventilation rate, manure moisture content, air temperature, and stacking profile; 4) more baseline data on air emissions from high-rise and MB houses are being collected in the United States to complement earlier measurements; 5) noncage houses generally have poorer air quality (ammonia and dust levels) than cage houses; 6) noncage houses tend to be colder during cold weather due to a lower stocking density than caged houses, leading to greater feed and fuel energy use; 7) hens in noncage houses are less efficient in resource (feed, energy, and land) utilization, leading to a greater carbon footprint; 8) excessive application of hen manure to cropland can lead to nutrient runoff to water bodies; 9) hen manure on open (free) range may be subject to runoff during rainfall, although quantitative data are lacking; 10) mitigation technologies exist to reduce generation and emission of noxious gases and dust; however, work is needed to evaluate their economic feasibility and optimize design; and 11) dietary modification shows promise for mitigating emissions. Further research is needed on 1) indoor air quality, barn emissions, thermal conditions, and energy use in alternative hen housing systems (1-story floor, aviary, and enriched cage systems), along with conventional housing systems under different production conditions; 2) environmental footprint for different US egg production systems through life cycle assessment; 3) practical means to mitigate air emissions from different production systems; 4) process-based models for predicting air emissions and their fate; and 5) the interactions between air quality, housing system, worker health, and animal health and welfare.


Journal of Dairy Science | 2010

Invited review: Contemporary environmental issues: A review of the dairy industry's role in climate change and air quality and the potential of mitigation through improved production efficiency

S.E. Place; Frank M. Mitloehner

Environmental concerns involving the dairy industry are shifting from an exclusive focus on water quality to encompass climate change and air quality issues. The dairy industrys climate change air emissions of concern are the greenhouse gases methane and nitrous oxide. With regard to air quality, the dairy industrys major emission contributions are particulate matter, volatile organic compounds, and ammonia. The emissions of these compounds from dairies can be variable because of a number of factors including weather conditions, animal type, management, and nutrition. To evaluate and compare emissions across the diverse operations that comprise the US dairy industry, emissions should be reported per unit of output (e.g., per kg of 3.5% fat-corrected milk). Accurately modeling emissions with models that can predict the complex bio-geochemical processes responsible for emissions is critical to assess current emissions inventories and develop mitigation strategies. Improving the dairy industrys production efficiency (e.g., improvements in management, nutrition, reproduction, and cow comfort) is an effective way to reduce emissions per unit of milk. With accurate process-based models, emissions reductions due to improved production efficiency could be reported per unit of milk and predicted on a farm-to-farm basis.


Applied and Environmental Microbiology | 2007

Bacterial Population Dynamics in Dairy Waste during Aerobic and Anaerobic Treatment and Subsequent Storage

Jeffery A. McGarvey; William G. Miller; Ruihong Zhang; Yanguo Ma; Frank M. Mitloehner

ABSTRACT The objective of this study was to model a typical dairy waste stream, monitor the chemical and bacterial population dynamics that occur during aerobic or anaerobic treatment and subsequent storage in a simulated lagoon, and compare them to those of waste held without treatment in a simulated lagoon. Both aerobic and anaerobic treatment methods followed by storage effectively reduced the levels of total solids (59 to 68%), biological oxygen demand (85 to 90%), and sulfate (56 to 65%), as well as aerobic (83 to 95%), anaerobic (80 to 90%), and coliform (>99%) bacteria. However, only aerobic treatment reduced the levels of ammonia, and anaerobic treatment was more effective at reducing total sulfur and sulfate. The bacterial population structure of waste before and after treatment was monitored using 16S rRNA gene sequence libraries. Both treatments had unique effects on the bacterial population structure of waste. Aerobic treatment resulted in the greatest change in the type of bacteria present, with the levels of eight out of nine phyla being significantly altered. The most notable differences were the >16-fold increase in the phylum Proteobacteria and the approximately 8-fold decrease in the phylum Firmicutes. Anaerobic treatment resulted in fewer alterations, but significant decreases in the phyla Actinobacteria and Bacteroidetes, and increases in the phyla Planctomycetes, Spirochetes, and TM7 were observed.


Environmental Science & Technology | 2010

Reactive organic gas emissions from livestock feed contribute significantly to ozone production in central California.

Cody J. Howard; Anuj Kumar; Irina L. Malkina; Frank M. Mitloehner; Peter G. Green; Robert G. Flocchini; Michael J. Kleeman

The San Joaquin Valley (SJV) in California currently experiences some of the highest surface ozone (O(3)) concentrations in the United States even though it has a population density that is an order of magnitude lower than many urban areas with similar ozone problems. Previously unrecognized agricultural emissions may explain why O(3) concentrations in the SJV have not responded to traditional emissions control programs. In the present study, the ozone formation potentials (OFP) of livestock feed emissions were measured on representative field samples using a transportable smog chamber. Seven feeds were considered: cereal silage (wheat grain and oat grain), alfalfa silage, corn silage, high moisture ground corn (HMGC), almond shells, almond hulls, and total mixed ration (TMR = 55% corn silage, 16% corn grain, 8% almond hulls, 7% hay, 7% bran + seeds, and 5% protein + vitamins + minerals). The measured short-term OFP for each gram of reactive organic gas (ROG) emissions from all livestock feed was 0.17-0.41 g-O(3) per g-ROG. For reference, OFP of exhaust from light duty gasoline powered cars under the same conditions is 0.69 +/- 0.15 g-O(3) per g-ROG. Model calculations were able to reproduce the ozone formation from animal feeds indicating that the measured ROG compounds account for the observed ozone formation (i.e., ozone closure was achieved). Ethanol and other alcohol species accounted for more than 50% of the ozone formation for most types of feed. Aldehydes were also significant contributors for cereal silage, high moisture ground corn, and total mixed ration. Ozone production calculations based on feed consumption rates, ROG emissions rates, and OFP predict that animal feed emissions dominate the ROG contributions to ozone formation in the SJV with total production of 25 +/- 10 t O(3) day(-1). The next most significant ROG source of ozone production in the SJV is estimated to be light duty vehicles with total production of 14.3 +/- 1.4 t O(3) day(-1). The majority of the animal feed ozone formation is attributed to corn silage. Future work should be conducted to reduce the uncertainty of ROG emissions from animal feeds in the SJV and to include this significant source of ozone formation in regional airshed models.


Journal of agricultural safety and health | 2008

Worker health and safety in concentrated animal feeding operations.

Frank M. Mitloehner; M.S. Calvo

A trend in consolidating livestock and poultry operations into concentrated animal feeding operations (CAFOs) potentially increases farm worker exposure to the hazards associated with high animal density conditions. The two main contributors of documented injury (fatal and non-fatal) are related to accidents with machinery and animals. Tractor rollovers are the leading accident in the area of farming machinery issues; kicks, bites, and workers being pinned between animals and fixed objects are non-machinery issues typically caused by inadequate precautions taken in the vicinity of livestock. These types of accidents are well documented; however, recommended safety strategies continue to be studied to reduce the risks and numbers of injuries associated with both machines and animals. Unlike accidents involving machinery and animals, air emission exposure and potential health effects from CAFOs are not well documented. CAFOs have the potential to show higher gaseous and particulate matter emissions compared to smaller farms. Pollutants like hydrogen sulfide, ammonia, volatile organic compounds, particulate matter, and endotoxin are emitted on CAFOs and can potentially affect worker health. These specific air emissions, their sources, and some of their harmful capabilities have been identified, and regulations have been implemented to create improved work environments on CAFOs. Despite such precautions, farm workers continue to report respiratory health symptoms related to their work environment. Air pollutant exposure and its health effects on farm workers require focused research to arrive at improved safety strategies that include mitigation techniques and protective gear to minimize adverse effects of working in CAFOs.


Measurement Science and Technology | 2005

Agricultural ammonia sensor using diode lasers and photoacoustic spectroscopy

Michael E Webber; Tyson MacDonald; Michael B. Pushkarsky; C. Kumar N. Patel; Yongjing Zhao; Nichole Marcillac; Frank M. Mitloehner

A trace-gas sensor based on fibre-amplifier enhanced photoacoustic spectroscopy has been developed for measuring ambient ammonia in agricultural settings. The sensor was built in an enclosure for continuous, unattended operation in dusty and humid conditions. Lab testing yielded benchmark results of sub-ppm sensitivity with a measurement time of 1 min and a linearity of 99.99%. Field testing was performed in environmental chambers at UC Davis where the excreta from three Holstein cows were allowed to accumulate, providing a source of ambient ammonia. The photoacoustic sensor measured the ambient ammonia in the room as it increased from below the detection threshold, up to 8 ppm, operating over a three-day period. Intercomparison measurements with the Federal reference method (EPA 40 CFR, using sulfuric acid filled impingers to trap ammonia and subsequent analysis using ion chromatography) yielded good to excellent correlation.


Journal of Animal Science | 2012

Carbon footprint and ammonia emissions of California beef production systems.

K. R. Stackhouse-Lawson; C. A. Rotz; J. W. Oltjen; Frank M. Mitloehner

Beef production is a recognized source of greenhouse gas (GHG) and ammonia (NH(3)) emissions; however, little information exists on the net emissions from beef production systems. A partial life cycle assessment (LCA) was conducted using the Integrated Farm System Model (IFSM) to estimate GHG and NH(3) emissions from representative beef production systems in California. The IFSM is a process-level farm model that simulates crop growth, feed production and use, animal growth, and the return of manure nutrients back to the land to predict the environmental impacts and economics of production systems. Ammonia emissions are determined by summing the emissions from animal housing facilities, manure storage, field applied manure, and direct deposits of manure on pasture and rangeland. All important sources and sinks of methane, nitrous oxide, and carbon dioxide are predicted from primary and secondary emission sources. Primary sources include enteric fermentation, manure, cropland used in feed production, and fuel combustion. Secondary emissions occur during the production of resources used on the farm, which include fuel, electricity, machinery, fertilizer, and purchased animals. The carbon footprint is the net exchange of all GHG in carbon dioxide equivalent (CO(2)e) units per kg of HCW produced. Simulated beef production systems included cow-calf, stocker, and feedlot phases for the traditional British beef breeds and calf ranch and feedlot phases for Holstein steers. An evaluation of differing production management strategies resulted in ammonia emissions ranging from 98 ± 13 to 141 ± 27 g/kg HCW and carbon footprints of 10.7 ± 1.4 to 22.6 ± 2.0 kg CO(2)e/kg HCW. Within the British beef production cycle, the cow-calf phase was responsible for 69 to 72% of total GHG emissions with 17 to 27% from feedlot sources. Holstein steers that entered the beef production system as a by-product of dairy production had the lowest carbon footprint because the emissions associated with their mothers were primarily attributed to milk rather than meat production. For the Holstein system, the feedlot phase was responsible for 91% of the total GHG emission, while the calf-ranch phase was responsible for 7% with the remaining 2% from transportation. This simulation study provides baseline emissions data for California beef production systems and indicates where mitigation strategies can be most effective in reducing emissions.


Journal of Dairy Science | 2009

Effects of shade and sprinklers on performance, behavior, physiology, and the environment of heifers

N.M. Marcillac-Embertson; P.H. Robinson; J.G. Fadel; Frank M. Mitloehner

The objective was to measure effects of cooling technique (shade vs. water sprinklers) on performance, behavior, physiology, and the environmental effect of 40 Holstein heifers housed in drylot corrals during the hot summer months. The experiment was a replicated crossover design with four 21-d periods and 2 treatments: 1) shades installed in the front half of the pen or 2) sprinklers, which applied water to the pen surface at 2-h intervals from 1100 to 1900 h. Animal performance measures were dry matter intake, average daily gain, and feed efficiency (gain:feed). Behavioral measures, elimination patterns, and corral spatial distribution were measured in 5-min scan frequencies over four 24-h periods. Physiological measures were rectal temperature, respiration rate, urinary urea N, and blood urea N. Environmental measures were corral soil surface temperature and moisture, particulate matter, and surface NH(3) volatilization; meteorological measures were also collected. Shaded compared with sprinkled heifers had increased dry matter intake (3.4%), increased average daily gain (14%), and increased feed efficiency (11%). Heifers in shaded vs. sprinkler treatments had decreased respiration rates (13%). Behavioral differences between the treatments varied by time of day. Heifers spent most time in either the shaded or sprinkled areas of their corrals (65.9 and 64.2%, respectively). Elimination behavior occurred predominantly at the front of the corral in close proximity to the feed bunks and additionally at the water trough in sprinkled corrals. Sprinkler treatment had a 31.7% greater average corral surface moisture than the shaded treatment. Corral surface temperature varied based on areas of surface moisture, shade location, and elimination concentration within the corral. Sprinkled corrals had less particulate matter emissions than shaded (25%), but NH(3) emissions were 46% greater in sprinkler vs. shaded treatment. Overall, the use of shade in heifer corrals improved heifer performance and physiological measures, but sprinkler treatment had less PM [corrected] emissions from corral surfaces under heat stress conditions. Both cooling techniques affected spatial distribution and behaviors of the heifers, which affected pen usage and surface characteristics.


Inhalation Toxicology | 2010

Lung antioxidant and cytokine responses to coarse and fine particulate matter from the great California wildfires of 2008

Teresa C. Wegesser; Lisa M. Franzi; Frank M. Mitloehner; Arantza Eiguren-Fernandez

The authors have previously demonstrated that wildfire-derived coarse or fine particulate matter (PM) intratracheally instilled into lungs of mice induce a strong inflammatory response. In the current study, the authors demonstrate that wildfire PM simultaneously cause major increases in oxidative stress in the mouse lungs as measured by decreased antioxidant content of the lung lavage supernatant fluid 6 and 24 h after PM administration. Concentrations of neutrophil chemokines/cytokines and of tumor necrosis factor (TNF)-α were elevated in the lung lavage fluid obtained 6 and 24 h after PM instillation, consistent with the strong neutrophilic inflammatory response observed in the lungs 24 h after PM administration, suggesting a relationship between the proinflammatory activity of the PM and the measured level of antioxidant capacity in the lung lavage fluid. Chemical analysis shows relatively low levels of polycyclic aromatic hydrocarbons compared to published results from typical urban PM. Coarse PM fraction is more active (proinflammatory activity and oxidative stress) on an equal-dose basis than the fine PM despite its lower content of polycyclic aromatic hydrocarbons. There does not seem to be any correlation between the content of any specific polycyclic aromatic hydrocarbon (or of total polycyclic aromatic hydrocarbon content) in the PM fraction and its toxicity. However, the concentrations of the oxidation products of phenanthrene and anthracene, phenanthraquinone and anthraquinone, were several-fold higher in the coarse PM than the fine fraction, suggesting a significant role for atmospheric photochemistry in the formation of secondary pollutants in the wildfire PM and the possibility that such secondary pollutants could be significant sources of toxicity in the wildfire PM.


Journal of Dairy Science | 2010

Prediction of ammonia emission from dairy cattle manure based on milk urea nitrogen: relation of milk urea nitrogen to ammonia emissions.

S.A. Burgos; N.M. Embertson; Yongjing Zhao; Frank M. Mitloehner; E.J. DePeters; J.G. Fadel

The main objectives of this study were to assess the relationship between ammonia emissions from dairy cattle manure and milk urea N (MUN; mg/dL) and to test whether the relationship was affected by stage of lactation and the dietary crude protein (CP) concentration. Twelve lactating multiparous Holstein cows were randomly selected and blocked into 3 groups of 4 cows intended to represent early [123+/-26 d in milk (DIM)], mid (175+/-3 DIM), and late (221+/-12 DIM) lactation stages. Cows within each stage of lactation were randomly assigned to a treatment sequence within a split-plot Latin square design balanced for carryover effects. Stage of lactation formed the main plots (squares) and dietary CP levels (15, 17, 19, and 21% of diet dry matter) formed the subplots. The experimental periods lasted 7 d, with d 1 to 6 used for adjustment to diets and d 7 used for total collection of feces and urine as well as milk sample collection. The feces and urine from each cow were mixed in the proportions in which they were excreted to make slurry that was used to measure ammonia emissions at 22.5 degrees C over 24 h using flux chambers. Samples of manure slurry were taken before and after ammonia emission measurements. The amount of slurry increased by 22% as dietary CP concentration increased from 15 to 21%, largely because of a greater urine volume (25.3 to 37.1 kg/d). Initial urea N concentration increased linearly with dietary CP from 153.5 to 465.2 mg/dL in manure slurries from cows fed 15 to 21% CP diets. Despite the large initial differences, the final concentration of urea N in manure slurries was less than 10.86 mg/dL for all dietary treatments. The final total ammoniacal N concentration in manure slurries increased linearly from 228.2 to 508.7 mg/dL as dietary CP content increased from 15 to 21%. Ammonia emissions from manure slurries ranged between 57 and 149 g of N/d per cow and increased linearly with dietary CP content, but were unaffected by stage of lactation. Ammonia emission expressed as a proportion of N intake increased with percentage CP in the diet from about 12 to 20%, whereas ammonia emission as a proportion of urinary urea N excretion decreased from 67 to 47%. There was a strong relationship between ammonia emission and MUN [ammonia emission (g/d per cow)=25.0 (+/-6.72)+5.03 (+/-0.373) x MUN (mg/dL); R(2)=0.85], which was not different among lactation stages. Milk urea N concentration is one of several factors that allows prediction of ammonia emissions from dairy cattle manure.

Collaboration


Dive into the Frank M. Mitloehner's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yongjing Zhao

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yuee Pan

University of California

View shared research outputs
Top Co-Authors

Avatar

Peter G. Green

University of California

View shared research outputs
Top Co-Authors

Avatar

Ruihong Zhang

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Felipe Montes

Pennsylvania State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge