Frank N. Gellerich
Otto-von-Guericke University Magdeburg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Frank N. Gellerich.
Nature Protocols | 2008
Andrey V. Kuznetsov; Vladimir Veksler; Frank N. Gellerich; Valdur Saks; Raimund Margreiter; Wolfram S Kunz
Analysis of mitochondrial function is central to the study of intracellular energy metabolism, mechanisms of cell death and pathophysiology of a variety of human diseases, including myopathies, neurodegenerative diseases and cancer. However, important properties of mitochondria differ in vivo and in vitro. Here, we describe a protocol for the analysis of functional mitochondria in situ, without the isolation of organelles, in selectively permeabilized cells or muscle fibers using digitonin or saponin. A specially designed substrate/inhibitor titration approach allows the step-by-step analysis of several mitochondrial complexes. This protocol allows the detailed characterization of functional mitochondria in their normal intracellular position and assembly, preserving essential interactions with other organelles. As only a small amount of tissue is required for analysis, the protocol can be used in diagnostic settings in clinical studies. The permeabilization procedure and specific titration analysis can be completed in 2 h.
PLOS ONE | 2010
Sabine Ruckerbauer; Lena F. Burbulla; Nicole Kieper; Brigitte Maurer; Jens Waak; Hartwig Wolburg; Zemfira Gizatullina; Frank N. Gellerich; Dirk Woitalla; Olaf Riess; Philipp J. Kahle; Tassula Proikas-Cezanne; Rejko Krüger
Background Mitochondrial dysfunction and degradation takes a central role in current paradigms of neurodegeneration in Parkinsons disease (PD). Loss of DJ-1 function is a rare cause of familial PD. Although a critical role of DJ-1 in oxidative stress response and mitochondrial function has been recognized, the effects on mitochondrial dynamics and downstream consequences remain to be determined. Methodology/Principal Findings Using DJ-1 loss of function cellular models from knockout (KO) mice and human carriers of the E64D mutation in the DJ-1 gene we define a novel role of DJ-1 in the integrity of both cellular organelles, mitochondria and lysosomes. We show that loss of DJ-1 caused impaired mitochondrial respiration, increased intramitochondrial reactive oxygen species, reduced mitochondrial membrane potential and characteristic alterations of mitochondrial shape as shown by quantitative morphology. Importantly, ultrastructural imaging and subsequent detailed lysosomal activity analyses revealed reduced basal autophagic degradation and the accumulation of defective mitochondria in DJ-1 KO cells, that was linked with decreased levels of phospho-activated ERK2. Conclusions/Significance We show that loss of DJ-1 leads to impaired autophagy and accumulation of dysfunctional mitochondria that under physiological conditions would be compensated via lysosomal clearance. Our study provides evidence for a critical role of DJ-1 in mitochondrial homeostasis by connecting basal autophagy and mitochondrial integrity in Parkinsons disease.
Biochimica et Biophysica Acta | 2010
Frank N. Gellerich; Zemfira Gizatullina; Sonata Trumbeckaite; Huu P. Nguyen; Thilo Pallas; Odeta Arandarcikaite; Stephan Vielhaber; Enn Seppet; Frank Striggow
Despite extensive research, the regulation of mitochondrial function is still not understood completely. Ample evidence shows that cytosolic Ca2+ has a strategic task in co-ordinating the cellular work load and the regeneration of ATP by mitochondria. Currently, the paradigmatic view is that Cacyt2+ taken up by the Ca2+ uniporter activates the matrix enzymes pyruvate dehydrogenase, alpha-ketoglutarate dehydrogenase and isocitrate dehydrogenase. However, we have recently found that Ca2+ regulates the glutamate-dependent state 3 respiration by the supply of glutamate to mitochondria via aralar, a mitochondrial glutamate/aspartate carrier. Since this activation is not affected by ruthenium red, glutamate transport into mitochondria is controlled exclusively by extramitochondrial Ca2+. Therefore, this discovery shows that besides intramitochondrial also extramitochondrial Ca2+ regulates oxidative phosphorylation. This new mechanism acts as a mitochondrial gas pedal, supplying the OXPHOS with substrate on demand. These results are in line with recent findings of Satrustegui and Palmieri showing that aralar as part of the malate-aspartate shuttle is involved in the Ca2+-dependent transport of reducing hydrogen equivalents (from NADH) into mitochondria. This review summarises results and evidence as well as hypothetical interpretations of data supporting the view that at the surface of mitochondria different regulatory Ca2+-binding sites exist and can contribute to cellular energy homeostasis. Moreover, on the basis of our own data, we propose that these surface Ca2+-binding sites may act as targets for neurotoxic proteins such as mutated huntingtin and others. The binding of these proteins to Ca2+-binding sites can impair the regulation by Ca2+, causing energetic depression and neurodegeneration.
Biochemical Journal | 2012
Frank N. Gellerich; Zemfira Gizatullina; Sonata Trumbekaite; Bernard Korzeniewski; Timur Gaynutdinov; Enn Seppet; Stefan Vielhaber; Hans-Jochen Heinze; Frank Striggow
The glutamate-dependent respiration of isolated BM (brain mitochondria) is regulated by Ca2+(cyt) (cytosolic Ca2+) (S0.5=225±22 nM) through its effects on aralar. We now also demonstrate that the α-glycerophosphate-dependent respiration is controlled by Ca2+(cyt) (S0.5=60±10 nM). At higher Ca2+(cyt) (>600 nM), BM accumulate Ca2+ which enhances the rate of intramitochondrial dehydrogenases. The Ca2+-induced increments of state 3 respiration decrease with substrate in the order glutamate>α-oxoglutarate>isocitrate>α-glycerophosphate>pyruvate. Whereas the oxidation of pyruvate is only slightly influenced by Ca2+(cyt), we show that the formation of pyruvate is tightly controlled by Ca2+(cyt). Through its common substrate couple NADH/NAD+, the formation of pyruvate by LDH (lactate dehydrogenase) is linked to the MAS (malate-aspartate shuttle) with aralar as a central component. A rise in Ca2+(cyt) in a reconstituted system consisting of BM, cytosolic enzymes of MAS and LDH causes an up to 5-fold enhancement of OXPHOS (oxidative phosphorylation) rates that is due to an increased substrate supply, acting in a manner similar to a gas pedal. In contrast, Ca2+(mit) (intramitochondrial Ca2+) regulates the oxidation rates of substrates which are present within the mitochondrial matrix. We postulate that Ca2+(cyt) is a key factor in adjusting the mitochondrial energization to the requirements of intact neurons.
Iubmb Life | 2013
Frank N. Gellerich; Zemfira Gizatullina; Timur Gainutdinov; Katharina Muth; Enn Seppet; Zulfiya Orynbayeva; S Vielhaber
This review focuses on problems of the intracellular regulation of mitochondrial function in the brain via the (i) supply of mitochondria with ADP by means of ADP shuttles and channels and (ii) the Ca2+ control of mitochondrial substrate supply. The permeability of the mitochondrial outer membrane for adenine nucleotides is low. Therefore rate dependent concentration gradients exist between the mitochondrial intermembrane space and the cytosol. The existence of dynamic ADP gradients is an important precondition for the functioning of ADP shuttles, for example CrP‐shuttle. Cr at mM concentrations instead of ADP diffuses from the cytosol through the porin pores into the intermembrane space. The CrP‐shuttle isoenzymes work in different directions which requires different metabolite concentrations mainly caused by dynamic ADP compartmentation. The ADP shuttle mechanisms alone cannot explain the load dependent changes in mitochondrial energization, and a complete model of mitochondrial regulation have to account the Ca2+‐dependent substrate supply too. According to the old paradigmatic view, Ca2+cyt taken up by the mitochondrial Ca2+ uniporter activates dehydrogenases within the matrix. However, recently it was found that Ca2+cyt at low nM concentrations exclusively activates the state 3 respiration via aralar, the mitochondrial glutamate/aspartate carrier. At higher Ca2+cyt (> 500 nM), brain mitochondria take up Ca2+ for activation of substrate oxidation rates. Since brain mitochondrial pyruvate oxidation is only slightly influenced by Ca2+cyt, it was proposed that the cytosolic formation of pyruvate from its precursors is tightly controlled by the Ca2+dependent malate/aspartate shuttle. At low (50–100 nM) Ca2+cyt the pyruvate formation is suppressed, providing a substrate limitation control in neurons. This so called “gas pedal” mechanism explains why the energy metabolism of neurons in the nucleus suprachiasmaticus could be down‐regulated at night but activated at day as a basis for the circadian changes in Ca2+cyt. It also could explain the energetic disadvantages caused by altered Ca2+cyt at mitochondrial diseases and neurodegeneration.
PLOS ONE | 2009
Frank N. Gellerich; Zemfira Gizatullina; Odeta Arandarcikaite; Doreen Jerzembek; Stefan Vielhaber; Enn Seppet; Frank Striggow
We present unexpected and novel results revealing that glutamate-dependent oxidative phosphorylation (OXPHOS) of brain mitochondria is exclusively and efficiently activated by extramitochondrial Ca2+ in physiological concentration ranges (S0.5u200a=u200a360 nM Ca2+). This regulation was not affected by RR, an inhibitor of the mitochondrial Ca2+ uniporter. Active respiration is regulated by glutamate supply to mitochondria via aralar, a mitochondrial glutamate/aspartate carrier with regulatory Ca2+-binding sites in the mitochondrial intermembrane space providing full access to cytosolic Ca2+. At micromolar concentrations, Ca2+ can also enter the intramitochondrial matrix and activate specific dehydrogenases. However, the latter mechanism is less efficient than extramitochondrial Ca2+ regulation of respiration/OXPHOS via aralar. These results imply a new mode of glutamate-dependent OXPHOS regulation as a demand-driven regulation of mitochondrial function. This regulation involves the mitochondrial glutamate/aspartate carrier aralar which controls mitochondrial substrate supply according to the level of extramitochondrial Ca2+.
Biochimica et Biophysica Acta | 2015
Felix Distelmaier; Federica Valsecchi; Dania C. Liemburg-Apers; Magdalena Lebiedzinska; Richard J. Rodenburg; Jaap Keijer; Jack A. M. Fransen; Hiromi Imamura; Katharina Danhauser; Annette Seibt; Benoit Viollet; Frank N. Gellerich; Jan A.M. Smeitink; Mariusz R. Wieckowski; Peter H. G. M. Willems; Werner J.H. Koopman
Dysfunction of complex I (CI) of the mitochondrial electron transport chain (ETC) features prominently in human pathology. Cell models of ETC dysfunction display adaptive survival responses that still are poorly understood but of relevance for therapy development. Here we comprehensively examined how primary human skin fibroblasts adapt to chronic CI inhibition. CI inhibition triggered transient and sustained changes in metabolism, redox homeostasis and mitochondrial (ultra)structure but no cell senescence/death. CI-inhibited cells consumed no oxygen and displayed minor mitochondrial depolarization, reverse-mode action of complex V, a slower proliferation rate and futile mitochondrial biogenesis. Adaptation was neither prevented by antioxidants nor associated with increased PGC1-α/SIRT1/mTOR levels. Survival of CI-inhibited cells was strictly glucose-dependent and accompanied by increased AMPK-α phosphorylation, which occurred without changes in ATP or cytosolic calcium levels. Conversely, cells devoid of AMPK-α died upon CI inhibition. Chronic CI inhibition did not increase mitochondrial superoxide levels or cellular lipid peroxidation and was paralleled by a specific increase in SOD2/GR, whereas SOD1/CAT/Gpx1/Gpx2/Gpx5 levels remained unchanged. Upon hormone stimulation, fully adapted cells displayed aberrant cytosolic and ER calcium handling due to hampered ATP fueling of ER calcium pumps. It is concluded that CI dysfunction triggers an adaptive program that depends on extracellular glucose and AMPK-α. This response avoids cell death by suppressing energy crisis, oxidative stress induction and substantial mitochondrial depolarization.
Biochimica et Biophysica Acta | 1994
Zaza Khuchua; Yulia O. Belikova; Andrey V. Kuznetsov; Frank N. Gellerich; Lorenz Schild; H.Wolfram Neumann; Wolfram S. Kunz
The rate of mitochondrial oxidative phosphorylation of saponin-skinned human muscle fibers from m. vastus lateralis in the presence of glutamate, malate and ATP is reported to be sensitive to caffeine and to changes of free calcium ion concentration. An approximately twofold increase in respiration was observed by the addition of 15 mM caffeine, because of the efflux of calcium from sarcoplasmic reticulum. Direct addition of a Ca2+/CaEGTA buffer, containing 1.5 microM free calcium ions had a similar effect. The ATP-splitting activity of skinned fibers was also stimulated by caffeine or calcium. These observations can be explained exclusively by the calcium-induced activation of actomyosin ATPase. (i) Thapsigargin, an inhibitor of the sarcoplasmic reticulum Ca(2+)-ATPase, had no influence. (ii) In myosin-extracted ghost fibers containing intact mitochondria and an intact sarcoplasmic reticulum caffeine had a negligible effect on oxidative phosphorylation. (iii) The caffeine-induced increase in rate of fiber respiration was concomitant with a decrease in mitochondrial membrane potential and a decrease in the redox state of the mitochondrial NAD system. (iv) The calcium ionophore A 23187 caused a stimulation of respiration and ATP-splitting activity, similar to caffeine. (v) The calcium dependencies of respiration and ATP splitting activity of saponin-skinned human muscle fibers were in experimental error identical. Therefore it is concluded that calcium efflux from sarcoplasmic reticulum affects oxidative phosphorylation in skeletal muscle mostly via the stimulation of actomyosin ATPase.
Journal of Neural Transmission | 2014
Werner Schmidt; Zemfira Gizatullina; Grazyna Debska-Vielhaber; Jürgen Voges; Frank Striggow; Patricia Panther; Herbert Schwegler; Hans-Jochen Heinze; Stefan Vielhaber; Frank N. Gellerich
Mitochondrial defects have been shown to be associated with the pathogenesis of Parkinson’s disease (PD). Yet, experience in PD research linking mitochondrial dysfunction, e.g., deregulation of oxidative phosphorylation, with neuronal degeneration and behavioral changes is rather limited. Using the 6-hydroxydopamine (6-OHDA) rat model of PD, we have investigated the potential role of mitochondria in dopaminergic neuronal cell death in the substantia nigra pars compacta by high-resolution respirometry. Mitochondrial function was correlated with the time course of disease-related motor behavior asymmetry and dopaminergic neuronal cell loss, respectively. Unilateral 6-OHDA injections (>2.5xa0μg/2xa0μl) into the median forebrain bundle induced an impairment of oxidative phosphorylation due to a decrease in complex I activity. This was indicated by increased flux control coefficient. During the period of days 2–21, a progressive decrease in respiratory control ratio of up to −58xa0% was observed in the lesioned compared to the non-lesioned substantia nigra of the same animals. This decrease was associated with a marked uncoupling of oxidative phosphorylation. Mitochondrial dysfunction, motor behavior asymmetry, and dopaminergic neuronal cell loss correlated with dosage (1.25–5xa0μg/2xa0μl). We conclude that high-resolution respirometry may allow the detection of distinct mitochondrial dysfunction as a suitable surrogate marker for the preclinical assessment of potential neuroprotective strategies in the 6-OHDA model of PD.
Mitochondrion | 2011
Zemfira Gizatullina; Timur Gaynutdinov; Hanno Svoboda; Doreen Jerzembek; Annette Knabe; Stefan Vielhaber; Miroslav Malesevic; Hans-Jochen Heinze; Gunter Fischer; Frank Striggow; Frank N. Gellerich
We studied the functional properties of isolated brain mitochondria (BM) prepared from total rat brain (BM(total)) or from cerebral subregions under basal and Ca(2+) overload conditions in order to evaluate the effects of cyclosporine A (CsA) in a regiospecific manner. CsA-induced effects were compared with those of two derivatives-the none-immunosuppressive [O-(NH(2)(CH2)(5)NHC(O)CH(2))-D-Ser](8)-CsA (Cs9) and its congener, the immunosuppressive [D-Ser](8)-CsA. The glutamate/malate-dependent state 3 respiration of mitochondria (state 3(glu/mal)) differed in region-specific manner (cortex > striatum = cerebellum > substantia nigra > hippocampus), but was significantly increased by 1μM CsA (+21±5%) in all regions. Ca(2+) overload induced by addition of 20μM Ca(2+) caused a significant decrease of state 3(glu/mal) (-45 to -55%) which was almost completely prevented in the presence of 1μM CsA, 1μM Cs9 or 1μM [D-Ser](8)-CsA. Mitochondrial Ca(2+) accumulation thresholds linked to permeability transition (PT) as well as the rate and completeness of mitochondrial Ca(2+) accumulation differed between different brain regions. For the first time, we provide a detailed, regiospecific analysis of Ca(2+)-dependent properties of brain mitochondria. Regardless of their immunosuppressive impact, CsA and its analogues improved mitochondrial functional properties under control conditions. They also preserved brain mitochondria against Ca(2+) overload-mediated PT and functional impairments. Since Cs9 does not mediate immunosuppression, it might be used as a more specific PT inhibitor than CsA.