Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Frank Preijers is active.

Publication


Featured researches published by Frank Preijers.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Bacille Calmette-Guérin induces NOD2-dependent nonspecific protection from reinfection via epigenetic reprogramming of monocytes

Johanneke Kleinnijenhuis; Jessica Quintin; Frank Preijers; Leo A. B. Joosten; Daniela C. Ifrim; Sadia Saeed; Cor Jacobs; Joke van Loenhout; Dirk J. de Jong; Hendrik G. Stunnenberg; Ramnik J. Xavier; Jos W. M. van der Meer; Reinout van Crevel; Mihai G. Netea

Adaptive features of innate immunity, recently described as “trained immunity,” have been documented in plants, invertebrate animals, and mice, but not yet in humans. Here we show that bacille Calmette-Guérin (BCG) vaccination in healthy volunteers led not only to a four- to sevenfold increase in the production of IFN-γ, but also to a twofold enhanced release of monocyte-derived cytokines, such as TNF and IL-1β, in response to unrelated bacterial and fungal pathogens. The enhanced function of circulating monocytes persisted for at least 3 mo after vaccination and was accompanied by increased expression of activation markers such as CD11b and Toll-like receptor 4. These training effects were induced through the NOD2 receptor and mediated by increased histone 3 lysine 4 trimethylation. In experimental studies, BCG vaccination induced T- and B-lymphocyte–independent protection of severe combined immunodeficiency SCID mice from disseminated candidiasis (100% survival in BCG-vaccinated mice vs. 30% in control mice). In conclusion, BCG induces trained immunity and nonspecific protection from infections through epigenetic reprogramming of innate immune cells.


Journal of Clinical Oncology | 2013

High Prognostic Impact of Flow Cytometric Minimal Residual Disease Detection in Acute Myeloid Leukemia: Data From the HOVON/SAKK AML 42A Study

Monique Terwijn; Wim L.J. van Putten; Angele Kelder; V H J van der Velden; Rik A. Brooimans; Thomas Pabst; Johan Maertens; Nancy Boeckx; Georgine E. de Greef; Frank Preijers; Peter C. Huijgens; Angelika M. Dräger; Urs Schanz; Mojca Jongen-Lavrecic; Bart J. Biemond; Jakob Passweg; Michel van Gelder; Pierre W. Wijermans; Carlos Graux; Mario Bargetzi; Marie-Cecile Legdeur; Jürgen Kuball; Okke de Weerdt; Yves Chalandon; Urs Hess; Leo F. Verdonck; Jan W. Gratama; Yvonne J.M. Oussoren; Willemijn J. Scholten; Jennita Slomp

PURPOSE Half the patients with acute myeloid leukemia (AML) who achieve complete remission (CR), ultimately relapse. Residual treatment-surviving leukemia is considered responsible for the outgrowth of AML. In many retrospective studies, detection of minimal residual disease (MRD) has been shown to enable identification of these poor-outcome patients by showing its independent prognostic impact. Most studies focus on molecular markers or analyze data in retrospect. This study establishes the value of immunophenotypically assessed MRD in the context of a multicenter clinical trial in adult AML with sample collection and analysis performed in a few specialized centers. PATIENTS AND METHODS In adults (younger than age 60 years) with AML enrolled onto the Dutch-Belgian Hemato-Oncology Cooperative Group/Swiss Group for Clinical Cancer Research Acute Myeloid Leukemia 42A study, MRD was evaluated in bone marrow samples in CR (164 after induction cycle 1, 183 after cycle 2, 124 after consolidation therapy). RESULTS After all courses of therapy, low MRD values distinguished patients with relatively favorable outcome from those with high relapse rate and adverse relapse-free and overall survival. In the whole patient group and in the subgroup with intermediate-risk cytogenetics, MRD was an independent prognostic factor. Multivariate analysis after cycle 2, when decisions about consolidation treatment have to be made, confirmed that high MRD values (> 0.1% of WBC) were associated with a higher risk of relapse after adjustment for consolidation treatment time-dependent covariate risk score and early or later CR. CONCLUSION In future treatment studies, risk stratification should be based not only on risk estimation assessed at diagnosis but also on MRD as a therapy-dependent prognostic factor.


American Journal of Human Genetics | 2009

Deficiency of Dol-P-Man Synthase Subunit DPM3 Bridges the Congenital Disorders of Glycosylation with the Dystroglycanopathies

Dirk J. Lefeber; Johannes Schönberger; Eva Morava; Maïlys Guillard; Karin M Huyben; Kiek Verrijp; Olga Grafakou; Athanasios Evangeliou; Frank Preijers; Panagiota Manta; Jef Yildiz; Stephanie Grunewald; Martha Spilioti; Christa van den Elzen; Dominique Klein; Daniel Hess; Hisashi Ashida; Jan Hofsteenge; Yusuke Maeda; Lambertus van den Heuvel; Martin Lammens; Ludwig Lehle; Ron A. Wevers

Alpha-dystroglycanopathies such as Walker Warburg syndrome represent an important subgroup of the muscular dystrophies that have been related to defective O-mannosylation of alpha-dystroglycan. In many patients, the underlying genetic etiology remains unsolved. Isolated muscular dystrophy has not been described in the congenital disorders of glycosylation (CDG) caused by N-linked protein glycosylation defects. Here, we present a genetic N-glycosylation disorder with muscular dystrophy in the group of CDG type I. Extensive biochemical investigations revealed a strongly reduced dolichol-phosphate-mannose (Dol-P-Man) synthase activity. Sequencing of the three DPM subunits and complementation of DPM3-deficient CHO2.38 cells showed a pathogenic p.L85S missense mutation in the strongly conserved coiled-coil domain of DPM3 that tethers catalytic DPM1 to the ER membrane. Cotransfection experiments in CHO cells showed a reduced binding capacity of DPM3(L85S) for DPM1. Investigation of the four Dol-P-Man-dependent glycosylation pathways in the ER revealed strongly reduced O-mannosylation of alpha-dystroglycan in a muscle biopsy, thereby explaining the clinical phenotype of muscular dystrophy. This mild Dol-P-Man biosynthesis defect due to DPM3 mutations is a cause for alpha-dystroglycanopathy, thereby bridging the congenital disorders of glycosylation with the dystroglycanopathies.


Haematologica | 2009

Standardization of flow cytometry in myelodysplastic syndromes: report from the first European LeukemiaNet working conference on flow cytometry in myelodysplastic syndromes

Canan Alhan; Marie C. Béné; Matteo G. Della Porta; Angelika M. Dräger; Jean Feuillard; Patricia Font; Ulrich Germing; Detlef Haase; Christa Homburg; Robin Ireland; Joop H. Jansen; Wolfgang Kern; Luca Malcovati; Jeroen G. te Marvelde; Ghulam J. Mufti; Kiyoyuki Ogata; Alberto Orfao; Gert J. Ossenkoppele; Anna Porwit; Frank Preijers; Stephen J. Richards; Gerrit Jan Schuurhuis; Dolores Subirá; Peter Valent; V H J van der Velden; Paresh Vyas; August H. Westra; Theo de Witte; Denise A. Wells; Michael R. Loken

This article decribes the results of the first European LeukemiaNet working conference on flow cytometry immunophenotyping in myelodysplastic syndrome. This report is a very comprehensive analysis of the topic, and provides detailed information on what is currently known in the field. See related perspective article on page 1041. The myelodysplastic syndromes are a group of clonal hematopoietic stem cell diseases characterized by cytopenia(s), dysplasia in one or more cell lineages and increased risk of evolution to acute myeloid leukemia (AML). Recent advances in immunophenotyping of hematopoietic progenitor and maturing cells in dysplastic bone marrow point to a useful role for multiparameter flow cytometry (FCM) in the diagnosis and prognostication of myelodysplastic syndromes. In March 2008, representatives from 18 European institutes participated in a European LeukemiaNet (ELN) workshop held in Amsterdam as a first step towards standardization of FCM in myelodysplastic syndromes. Consensus was reached regarding standard methods for cell sampling, handling and processing. The group also defined minimal combinations of antibodies to analyze aberrant immunophenotypes and thus dysplasia. Examples are altered numbers of CD34+ precursors, aberrant expression of markers on myeloblasts, maturing myeloid cells, monocytes or erythroid precursors and the expression of lineage infidelity markers. When applied in practice, aberrant FCM patterns correlate well with morphology, the subclassification of myelodysplastic syndromes, and prognostic scoring systems. However, the group also concluded that despite strong evidence for an impact of FCM in myelodysplastic syndromes, further (prospective) validation of markers and immunophenotypic patterns are required against control patient groups as well as further standardization in multi-center studies. Standardization of FCM in myelodysplastic syndromes may thus contribute to improved diagnosis and prognostication of myelodysplastic syndromes in the future.


Cytometry | 1998

Flow cytometric enumeration of CD34+ hematopoietic stem and progenitor cells.

Jan W. Gratama; Alberto Orfao; David Barnett; Bruno Brando; Andreas Huber; George Janossy; Hans Erik Johnsen; Michael Keeney; Gerald E. Marti; Frank Preijers; Gregor Rothe; Stefan Serke; D. Robert Sutherland; C. Ellen Van der Schoot; Gerd Schmitz; Stefano Papa

The need for a rapid and reliable marker for the engraftment potential of hematopoietic stem and progenitor cell (HPC) transplants has led to the development of flow cytometric assays to quantitate such cells on the basis of their expression of CD34. The variability associated with enumeration of low-frequency cells (i.e., as low as 0.1% or 5 cells/microl) is exceedingly large, but recent developments have improved the accuracy and precision of the assay. Here, we review and compare the major techniques. Based on the current state of the art, we recommend 1) bright fluorochrome conjugates of class II or III monoclonal antibodies (mAbs) that detect all glycoforms of CD34, 2) use of a vital nucleic acid dye to exclude platelets, unlysed red cells, and debris or use of 7-amino actinomycin D to exclude dead cells during data acquisition, 3) counterstaining with CD45 mAb to be included in the definition of HPC, 4) during list mode data analysis, Boolean gating to resolve the CD34+ HPCs from irrelevant cell populations on the basis of the low levels of CD45 expression and low sideward light-scatter signals of HPCs, 5) inclusion of CD34dim and CD34bright populations in the CD34+ cell count, 6) omission of the negative control staining, and 7) for apheresis products, enumeration of at least 100 CD34+ cells to ensure a 10% precision. Unresolved technical questions are 1) the replacement of conventional dual-platform by single-platform assay formats, i.e., derivation of absolute CD34+ cell counts from a single flow cytometric assessment instead of from combined flow cytometer (percent CD34+) and hematology analyzer (absolute leukocyte count) data, 2) the cross-calibration of the available single-platform assays, and 3) the optimal method for sample preparation. An important clinical question to be addressed is the definition of the precise phenotypes and required numbers of HPCs responsible for short- and long-term recovery to optimize HPC transplant strategies.


Annals of the Rheumatic Diseases | 2008

Long-term follow-up results after autologous haematopoietic stem cell transplantation for severe systemic sclerosis.

Madelon C. Vonk; Zora Marjanovic; F.H.J. van den Hoogen; S. Zohar; Anton Schattenberg; Willem E. Fibbe; Jérôme Larghero; Eliane Gluckman; Frank Preijers; A.P.J. van Dijk; J.J. Bax; P. Roblot; P.L.C.M. van Riel; J M van Laar; D Farge

Objective: Systemic sclerosis (SSc) is a generalised autoimmune disease, causing morbidity and a reduced life expectancy, especially in patients with rapidly progressive diffuse cutaneous SSc. As no proven treatment exists, autologous haematopoietic stem cell transplantation (HSCT) is employed as a new therapeutic strategy in patients with a poor prognosis. This study reports the effects on survival, skin and major organ function of HSCT in patients with severe diffuse cutaneous SSc. Patients and methods: A total of 26 patients were evaluated. Peripheral blood stem cells were collected using cyclophosphamide (4 g/m2) and rHu G-CSF (5 to 10 μg/kg/day) and were reinfused after positive CD34+ selection. For conditioning, cyclophosphamide 200 mg/kg was used. Results: After a median follow-up of 5.3 (1–7.5) years, 81% (n = 21/26) of the patients demonstrated a clinically beneficial response. The Kaplan–Meier estimated survival at 5 years was 96.2% (95% CI 89–100%) and at 7 years 84.8% (95% CI 70.2–100%) and event-free survival, defined as survival without mortality, relapse or progression of SSc, resulting in major organ dysfunction was 64.3% (95% CI 47.9–86%) at 5 years and 57.1% (95% CI 39.3–83%) at 7 years. Conclusion: This study confirms that autologous HSCT in selected patients with severe diffuse cutaneous SSc results in sustained improvement of skin thickening and stabilisation of organ function up to 7 years after transplantation.


American Journal of Respiratory and Critical Care Medicine | 2012

Reversal of immunoparalysis in humans in vivo: a double-blind, placebo-controlled, randomized pilot study

Jenneke Leentjens; Matthijs Kox; R.M. Koch; Frank Preijers; Leo A. B. Joosten; J.G. van der Hoeven; Mihai G. Netea; Peter Pickkers

RATIONALE Reversal of sepsis-induced immunoparalysis may reduce the incidence of secondary infections and improve outcome. Although IFN-γ and granulocyte-macrophage colony-stimulating factor (GM-CSF) restore immune competence of ex vivo stimulated leukocytes of patients with sepsis, effects on immunoparalysis in vivo are not known. OBJECTIVES To investigate the effects of IFN-γ and GM-CSF on immunoparalysis in vivo in humans. METHODS We performed a double-blind, placebo-controlled, randomized study in 18 healthy male volunteers that received Escherichia coli endotoxin (LPS; 2 ng/kg, intravenously) on days 1 and 7 (visits 1 and 2). On days 2, 4, and 6, subjects received subcutaneous injections of IFN-γ (100 μg/day; n = 6), GM-CSF (4 μg/kg/day; n = 6), or placebo (NaCl 0.9%; n = 6). MEASUREMENTS AND MAIN RESULTS In the placebo group, immunoparalysis was illustrated by a 60% (48-71%) reduction of LPS-induced tumor necrosis factor (TNF)-α plasma concentrations during visit 2 (P = 0.03), whereas the antiinflammatory IL-10 response was not significantly attenuated (39% [2-65%]; P = 0.15). In contrast, in the IFN-γ group, TNF-α concentrations during visit 2 were not significantly attenuated (28% [1-47%]; P = 0.09), whereas the IL-10 response was significantly lower (reduction of 54% [47-66%]; P = 0.03). Compared with the placebo group, the reduction in the LPS-induced TNF-α response during visit 2 was significantly less pronounced in the IFN-γ group (P = 0.01). Moreover, compared with placebo, treatment with IFN-γ increased monocyte HLA-DR expression (P = 0.02). The effects of GM-CSF tended in the same direction as IFN-γ, but were not statistically significant compared with placebo. CONCLUSIONS IFN-γ partially reverses immunoparalysis in vivo in humans. These results suggest that IFN-γ is a promising treatment option to reverse sepsis-induced immunoparalysis.


PLOS ONE | 2011

Clinical-Grade Generation of Active NK Cells from Cord Blood Hematopoietic Progenitor Cells for Immunotherapy Using a Closed-System Culture Process

Jan Spanholtz; Frank Preijers; Marleen Tordoir; Carel Trilsbeek; Jos Paardekooper; Theo de Witte; Nicolaas Schaap; Harry Dolstra

Natural killer (NK) cell-based adoptive immunotherapy is a promising treatment approach for many cancers. However, development of protocols that provide large numbers of functional NK cells produced under GMP conditions are required to facilitate clinical studies. In this study, we translated our cytokine-based culture protocol for ex vivo expansion of NK cells from umbilical cord blood (UCB) hematopoietic stem cells into a fully closed, large-scale, cell culture bioprocess. We optimized enrichment of CD34+ cells from cryopreserved UCB units using the CliniMACS system followed by efficient expansion for 14 days in gas-permeable cell culture bags. Thereafter, expanded CD34+ UCB cells could be reproducibly amplified and differentiated into CD56+CD3− NK cell products using bioreactors with a mean expansion of more than 2,000 fold and a purity of >90%. Moreover, expansion in the bioreactor yielded a clinically relevant dose of NK cells (mean: 2×109 NK cells), which display high expression of activating NK receptors and cytolytic activity against K562. Finally, we established a versatile closed washing procedure resulting in optimal reduction of medium, serum and cytokines used in the cell culture process without changes in phenotype and cytotoxic activity. These results demonstrate that large numbers of UCB stem cell-derived NK cell products for adoptive immunotherapy can be produced in closed, large-scale bioreactors for the use in clinical trials.


PLOS ONE | 2008

Clinical Grade Treg: GMP Isolation, Improvement of Purity by CD127pos Depletion, Treg Expansion, and Treg Cryopreservation

Jorieke H. Peters; Frank Preijers; Rob Woestenenk; Luuk B. Hilbrands; Hans J. P. M. Koenen; I. Joosten

Background Treg based immunotherapy is of great interest to facilitate tolerance in autoimmunity and transplantation. For clinical trials, it is essential to have a clinical grade Treg isolation protocol in accordance with Good Manufacturing Practice (GMP) guidelines. To obtain sufficient Treg for immunotherapy, subsequent ex vivo expansion might be needed. Methodology/Principal Findings Treg were isolated from leukapheresis products by CliniMACS based GMP isolation strategies, using anti-CD25, anti-CD8 and anti-CD19 coated microbeads. CliniMACS isolation procedures led to 40–60% pure CD4posCD25highFoxP3pos Treg populations that were anergic and had moderate suppressive activity. Such CliniMACS isolated Treg populations could be expanded with maintenance of suppressive function. Alloantigen stimulated expansion caused an enrichment of alloantigen-specific Treg. Depletion of unwanted CD19pos cells during CliniMACS Treg isolation proved necessary to prevent B-cell outgrowth during expansion. CD4posCD127pos conventional T cells were the major contaminating cell type in CliniMACS isolated Treg populations. Depletion of CD127pos cells improved the purity of CD4posCD25highFoxP3pos Treg in CliniMACS isolated cell populations to approximately 90%. Expanded CD127neg CliniMACS isolated Treg populations showed very potent suppressive capacity and high FoxP3 expression. Furthermore, our data show that cryopreservation of CliniMACS isolated Treg is feasible, but that activation after thawing is necessary to restore suppressive potential. Conclusions/Significance The feasibility of Treg based therapy is widely accepted, provided that tailor-made clinical grade procedures for isolation and ex vivo cell handling are available. We here provide further support for this approach by showing that a high Treg purity can be reached, and that isolated cells can be cryopreserved and expanded successfully.


PLOS ONE | 2010

High Log-Scale Expansion of Functional Human Natural Killer Cells from Umbilical Cord Blood CD34-Positive Cells for Adoptive Cancer Immunotherapy

Jan Spanholtz; Marleen Tordoir; Diana Eissens; Frank Preijers; Arnold van der Meer; Irma Joosten; Nicolaas Schaap; Theo de Witte; Harry Dolstra

Immunotherapy based on natural killer (NK) cell infusions is a potential adjuvant treatment for many cancers. Such therapeutic application in humans requires large numbers of functional NK cells that have been selected and expanded using clinical grade protocols. We established an extremely efficient cytokine-based culture system for ex vivo expansion of NK cells from hematopoietic stem and progenitor cells from umbilical cord blood (UCB). Systematic refinement of this two-step system using a novel clinical grade medium resulted in a therapeutically applicable cell culture protocol. CD56+CD3− NK cell products could be routinely generated from freshly selected CD34+ UCB cells with a mean expansion of >15,000 fold and a nearly 100% purity. Moreover, our protocol has the capacity to produce more than 3-log NK cell expansion from frozen CD34+ UCB cells. These ex vivo-generated cell products contain NK cell subsets differentially expressing NKG2A and killer immunoglobulin-like receptors. Furthermore, UCB-derived CD56+ NK cells generated by our protocol uniformly express high levels of activating NKG2D and natural cytotoxicity receptors. Functional analysis showed that these ex vivo-generated NK cells efficiently target myeloid leukemia and melanoma tumor cell lines, and mediate cytolysis of primary leukemia cells at low NK-target ratios. Our culture system exemplifies a major breakthrough in producing pure NK cell products from limited numbers of CD34+ cells for cancer immunotherapy.

Collaboration


Dive into the Frank Preijers's collaboration.

Top Co-Authors

Avatar

T.J.M. de Witte

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

Harry Dolstra

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

N.P.M. Schaap

Radboud University Nijmegen Medical Centre

View shared research outputs
Top Co-Authors

Avatar

Theo de Witte

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

Diana Eissens

Radboud University Nijmegen Medical Centre

View shared research outputs
Top Co-Authors

Avatar

Joop H. Jansen

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

V H J van der Velden

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

Bijan Moshaver

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

I. Joosten

Radboud University Nijmegen Medical Centre

View shared research outputs
Researchain Logo
Decentralizing Knowledge