Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Frank R. Bengelsdorf is active.

Publication


Featured researches published by Frank R. Bengelsdorf.


Environmental Technology | 2013

Bacterial synthesis gas (syngas) fermentation.

Frank R. Bengelsdorf; Melanie Straub; Peter Dürre

Acetogenic bacteria employing the Wood–Ljungdahl pathway can be used as biocatalysts in syngas fermentation for the production of biofuels such as ethanol or butanol as well as biocommodities such as acetate, lactate, butyrate, 2,3 butanediol, and acetone. The potential of such processes can be projected by the global syngas output, which was 70,817 megawatts thermal in 2010 and is expected to increase up to 72% in 2016. To date, different acetogens are used as commercial production strains for industrial syngas fermentations in pilot or demonstration plants (Coskata, INEOS Bio, LanzaTech) and first commercial units are expected to launch operation in the near future (INEOS Bio, LanzaTech). Considerations on potential yields are quite promising for fermentative production. New methods for metabolic engineering were established to construct novel recombinant acetogenic biocatalysts. Synthetic biology will certainly play a major role in constructing strains for commercial operations. This way, a cheap and abundant carbon source most probably replace, processes based on crude oil or sugar in the near future.


Mbio | 2015

The Complete Genome Sequence of Clostridium aceticum: a Missing Link between Rnf- and Cytochrome-Containing Autotrophic Acetogens

Anja Poehlein; Martin Cebulla; Marcus M. Ilg; Frank R. Bengelsdorf; Bettina Schiel-Bengelsdorf; Gregg Whited; Jan R. Andreesen; Gerhard Gottschalk; Rolf Daniel; Peter Dürre

ABSTRACT Clostridium aceticum was the first isolated autotrophic acetogen, converting CO2 plus H2 or syngas to acetate. Its genome has now been completely sequenced and consists of a 4.2-Mbp chromosome and a small circular plasmid of 5.7 kbp. Sequence analysis revealed major differences from other autotrophic acetogens. C. aceticum contains an Rnf complex for energy conservation (via pumping protons or sodium ions). Such systems have also been found in C. ljungdahlii and Acetobacterium woodii. However, C. aceticum also contains a cytochrome, as does Moorella thermoacetica, which has been proposed to be involved in the generation of a proton gradient. Thus, C. aceticum seems to represent a link between Rnf- and cytochrome-containing autotrophic acetogens. In C. aceticum, however, the cytochrome is probably not involved in an electron transport chain that leads to proton translocation, as no genes for quinone biosynthesis are present in the genome. IMPORTANCE Autotrophic acetogenic bacteria are receiving more and more industrial focus, as CO2 plus H2 as well as syngas are interesting new substrates for biotechnological processes. They are both cheap and abundant, and their use, if it results in sustainable products, also leads to reduction of greenhouse gases. Clostridium aceticum can use both gas mixtures, is phylogenetically not closely related to the commonly used species, and may thus become an even more attractive workhorse. In addition, its energy metabolism, which is characterized here, and the ability to synthesize cytochromes might offer new targets for improving the ATP yield by metabolic engineering and thus allow use of C. aceticum for production of compounds by pathways that currently present challenges for energy-limited acetogens. Autotrophic acetogenic bacteria are receiving more and more industrial focus, as CO2 plus H2 as well as syngas are interesting new substrates for biotechnological processes. They are both cheap and abundant, and their use, if it results in sustainable products, also leads to reduction of greenhouse gases. Clostridium aceticum can use both gas mixtures, is phylogenetically not closely related to the commonly used species, and may thus become an even more attractive workhorse. In addition, its energy metabolism, which is characterized here, and the ability to synthesize cytochromes might offer new targets for improving the ATP yield by metabolic engineering and thus allow use of C. aceticum for production of compounds by pathways that currently present challenges for energy-limited acetogens.


FEMS Microbiology Ecology | 2013

Stability of a biogas-producing bacterial, archaeal and fungal community degrading food residues

Frank R. Bengelsdorf; Ulrike Gerischer; Susanne Langer; Manuel Zak; Marian Kazda

The resident microbiota was analyzed in a mesophilic, continuously operating biogas plant predominantly utilizing food residues, stale bread, and other waste cosubstrates together with pig manure and maize silage. The dominating bacterial, archaeal, and eukaryotic community members were characterized by two different 16S/18S rRNA gene culture-independent approaches. Prokaryotic 16S rRNA gene and eukaryotic 18S rRNA gene clone libraries were constructed and further analyzed by restriction fragment length polymorphism (RFLP), 16S/18S rRNA gene sequencing, and phylogenetic tree reconstruction. The most dominant bacteria belonged to the phyla Bacteriodetes, Chloroflexus, and Firmicutes. On the family level, the bacterial composition confirmed high differences among biogas plants studied so fare. In contrast, the methanogenic archaeal community was similar to that of other studied biogas plants. Furthermore, it was possible to identify fungi at the genus level, namely Saccharomyces and Mucor. Both genera, which are important for microbial degradation of complex compounds, were up to now not found in biogas plants. The results revealed their long-term presence as indicated by denaturating gradient gel electrophoresis (DGGE). The DGGE method confirmed that the main members of the microbial community were constantly present over more than one-year period.


Metabolic Engineering | 2016

Acetone production with metabolically engineered strains of Acetobacterium woodii.

Sabrina Hoffmeister; Marzena Gerdom; Frank R. Bengelsdorf; Sonja Linder; Sebastian Flüchter; Hatice Öztürk; Wilfried Blümke; Antje May; Ralf-Jörg Fischer; Hubert Bahl; Peter Dürre

Expected depletion of oil and fossil resources urges the development of new alternative routes for the production of bulk chemicals and fuels beyond petroleum resources. In this study, the clostridial acetone pathway was used for the formation of acetone in the acetogenic bacterium Acetobacterium woodii. The acetone production operon (APO) containing the genes thlA (encoding thiolase A), ctfA/ctfB (encoding CoA transferase), and adc (encoding acetoacetate decarboxylase) from Clostridium acetobutylicum were cloned under the control of the thlA promoter into four vectors having different replicons for Gram-positives (pIP404, pBP1, pCB102, and pCD6). Stable replication was observed for all constructs. A. woodii [pJIR_actthlA] achieved the maximal acetone concentration under autotrophic conditions (15.2±3.4mM). Promoter sequences of the genes ackA from A. woodii and pta-ack from C. ljungdahlii were determined by primer extension (PEX) and cloned upstream of the APO. The highest acetone production in recombinant A. woodii cells was achieved using the promoters PthlA and Ppta-ack. Batch fermentations using A. woodii [pMTL84151_actthlA] in a bioreactor revealed that acetate concentration had an effect on the acetone production, due to the high Km value of the CoA transferase. In order to establish consistent acetate concentration within the bioreactor and to increase biomass, a continuous fermentation process for A. woodii was developed. Thus, acetone productivity of the strain A. woodii [pMTL84151_actthlA] was increased from 1.2mgL(-1)h(-1) in bottle fermentation to 26.4mgL(-1)h(-1) in continuous gas fermentation.


Energy, Sustainability and Society | 2014

Fungi open new possibilities for anaerobic fermentation of organic residues

Marian Kazda; Susanne Langer; Frank R. Bengelsdorf

BackgroundLarge amounts of fibre-rich organic waste material from public green and private gardens have to be treated environmentally friendly; however, this fibre-rich biomass has low biogas yields. This study investigated the presence of fungi in full-scale biogas plants as well as in laboratory reactors and elucidated the importance of fungi for the biogas process.MethodsThe dominating members of the eukaryotic community were identified by analyzing 18S rRNA gene and internal transcribed spacer 1 (ITS1) region fragments of clone libraries. These identifications were accompanied by diverse microscopic techniques such as fluorescence microscopy and conventional scanning electron microscopy.ResultsCells of presumably fungal origin were characterized by intensive fluorescence and were about 1 order of magnitude larger than prokaryotic cells. Molecular techniques enabled to identify fungi from the subphyla Agaricomycotina, Mucoromycotina, Pezizomycotina, Pucciniomycotina and Saccharomycotina and from the class Neocallimastigomycetes. Members of these groups can be important for microbial degradation of complex compounds, due to the ability to penetrate cell walls, and thus open the cells for the influx of bacteria, further enhancing degradation.ConclusionsOptimal treatment of biowaste depends on the amount of lignocelluloses. Targeted application of fungi to the biogas process will open wider possibilities for anaerobic treatment of fibre-rich biomass and can result in better biomass utilization as a renewable energy resource. Due to higher temperature optima of fungal cellulolytic enzymes, the thermophilic process is suggested for anaerobic degradation of fibre-rich biomass.


Frontiers in Microbiology | 2016

Industrial Acetogenic Biocatalysts: A Comparative Metabolic and Genomic Analysis

Frank R. Bengelsdorf; Anja Poehlein; Sonja Linder; Catarina Erz; Tim Hummel; Sabrina Hoffmeister; Rolf Daniel; Peter Dürre

Synthesis gas (syngas) fermentation by anaerobic acetogenic bacteria employing the Wood–Ljungdahl pathway is a bioprocess for production of biofuels and biocommodities. The major fermentation products of the most relevant biocatalytic strains (Clostridium ljungdahlii, C. autoethanogenum, C. ragsdalei, and C. coskatii) are acetic acid and ethanol. A comparative metabolic and genomic analysis using the mentioned biocatalysts might offer targets for metabolic engineering and thus improve the production of compounds apart from ethanol. Autotrophic growth and product formation of the four wild type (WT) strains were compared in uncontrolled batch experiments. The genomes of C. ragsdalei and C. coskatii were sequenced and the genome sequences of all four biocatalytic strains analyzed in comparative manner. Growth and product spectra (acetate, ethanol, 2,3-butanediol) of C. autoethanogenum, C. ljungdahlii, and C. ragsdalei were rather similar. In contrast, C. coskatii produced significantly less ethanol and its genome sequence lacks two genes encoding aldehyde:ferredoxin oxidoreductases (AOR). Comparative genome sequence analysis of the four WT strains revealed high average nucleotide identity (ANI) of C. ljungdahlii and C. autoethanogenum (99.3%) and C. coskatii (98.3%). In contrast, C. ljungdahlii WT and C. ragsdalei WT showed an ANI-based similarity of only 95.8%. Additionally, recombinant C. ljungdahlii strains were constructed that harbor an artificial acetone synthesis operon (ASO) consisting of the following genes: adc, ctfA, ctfB, and thlA (encoding acetoacetate decarboxylase, acetoacetyl-CoA:acetate/butyrate:CoA-transferase subunits A and B, and thiolase) under the control of thlA promoter (PthlA) from C. acetobutylicum or native pta-ack promoter (Ppta-ack) from C. ljungdahlii. Respective recombinant strains produced 2-propanol rather than acetone, due to the presence of a NADPH-dependent primary-secondary alcohol dehydrogenase that converts acetone to 2-propanol. Furthermore, the ClosTronTM system was used to construct an adhE1 integration mutant. These results provide extensive insights into genetic features of industrially relevant bacterial biocatalysts and expand the toolbox for metabolic engineering of acetogenic bacteria able to ferment syngas.


Genome Announcements | 2015

Complete Genome Sequence of the Type Strain of the Acetogenic Bacterium Moorella thermoacetica DSM 521T

Anja Poehlein; Frank R. Bengelsdorf; Carola Esser; Bettina Schiel-Bengelsdorf; Rolf Daniel; Peter Dürre

ABSTRACT Here we report the closed genome sequence of the type strain Moorella thermoacetica DSM 521T, an acetogenic bacterium, which is able to grow autotrophically on H2 + CO2 and/or CO, using the Wood-Ljungdahl pathway. The genome consists of a circular chromosome (2.53 Mb).


Microbial Biotechnology | 2015

Functionally redundant but dissimilar microbial communities within biogas reactors treating maize silage in co-fermentation with sugar beet silage.

Susanne Langer; Sharif Ahmed; Daniel Einfalt; Frank R. Bengelsdorf; Marian Kazda

Numerous observations indicate a high flexibility of microbial communities in different biogas reactors during anaerobic digestion. Here, we describe the functional redundancy and structural changes of involved microbial communities in four lab‐scale continuously stirred tank reactors (CSTRs, 39°C, 12 L volume) supplied with different mixtures of maize silage (MS) and sugar beet silage (SBS) over 80 days. Continuously stirred tank reactors were fed with mixtures of MS and SBS in volatile solid ratios of 1:0 (Continuous Fermenter (CF) 1), 6:1 (CF2), 3:1 (CF3), 1:3 (CF4) with equal organic loading rates (OLR 1.25 kgVS m−3 d−1) and showed similar biogas production rates in all reactors. The compositions of bacterial and archaeal communities were analysed by 454 amplicon sequencing approach based on 16S rRNA genes. Both bacterial and archaeal communities shifted with increasing amounts of SBS. Especially pronounced were changes in the archaeal composition towards Methanosarcina with increasing proportion of SBS, while Methanosaeta declined simultaneously. Compositional shifts within the microbial communities did not influence the respective biogas production rates indicating that these communities adapted to environmental conditions induced by different feedstock mixtures. The diverse microbial communities optimized their metabolism in a way that ensured efficient biogas production.


Genome Announcements | 2015

Complete Genome Sequence of the Acetogenic Bacterium Moorella thermoacetica DSM 2955T

Frank R. Bengelsdorf; Anja Poehlein; Carola Esser; Bettina Schiel-Bengelsdorf; Rolf Daniel; Peter Dürre

ABSTRACT Here, we report the complete genome sequence of Moorella thermoacetica DSM 2955T, an acetogenic bacterium, which uses the Wood–Ljungdahl pathway for reduction of H2 + CO2 or CO. The genome consists of a single circular chromosome (2.62 Mb).


Genome Announcements | 2015

Complete Genome Sequence of Rnf- and Cytochrome-Containing Autotrophic Acetogen Clostridium aceticum DSM 1496

Anja Poehlein; Frank R. Bengelsdorf; Bettina Schiel-Bengelsdorf; Gerhard Gottschalk; Rolf Daniel; Peter Dürre

ABSTRACT Here, we report the closed genome sequence of Clostridium aceticum, an Rnf- and cytochrome-containing autotrophic acetogen that is able to convert CO2 and H2 to acetate using the Wood-Ljungdahl pathway. The genome consists of a circular chromosome (4.2 Mbp) and a small circular plasmid (5.7 kbp).

Collaboration


Dive into the Frank R. Bengelsdorf's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anja Poehlein

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar

Rolf Daniel

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge