Frank R. Cook
University of Kentucky
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Frank R. Cook.
Journal of Clinical Microbiology | 2011
Katia Cappelli; Stefano Capomaccio; Frank R. Cook; Michela Felicetti; Maria Luisa Marenzoni; Giacomo Coppola; Andrea Verini-Supplizi; Mauro Coletti; Fabrizio Passamonti
ABSTRACT The application of molecular diagnostic techniques along with nucleotide sequence determination to permit contemporary phylogenetic analysis of European field isolates of equine infectious anemia virus (EIAV) has not been widely reported. As a result, of extensive testing instigated following the 2006 outbreak of equine infectious anemia in Italy, 24 farms with a history of exposure to this disease were included in this study. New PCR-based methods were developed, which, especially in the case of DNA preparations from peripheral blood cells, showed excellent correlation with OIE-approved agar gel immunodiffusion (AGID) tests for identifying EIAV-infected animals. In contrast, the OIE-recommended oligonucleotide primers for EIAV failed to react with any of the Italian isolates. Similar results were also obtained with samples from four Romanian farms. In addition, for the first time complete characterization of gag genes from five Italian isolates and one Romanian isolate has been achieved, along with acquisition of extensive sequence information (86% of the total gag gene) from four additional EIAV isolates (one Italian and three Romanian). Furthermore, in another 23 cases we accomplished partial characterization of gag gene sequences in the region encoding the viral matrix protein. Analysis of this information suggested that most Italian isolates were geographically restricted, somewhat reminiscent of the “clades” described for human immunodeficiency virus type 1 (HIV-1). Collectively this represents the most comprehensive genetic study of European EIAV isolates conducted to date.
Veterinary Microbiology | 2013
Maria Teresa Scicluna; Charles J. Issel; Frank R. Cook; Giuseppe Manna; Antonella Cersini; Francesca Rosone; Raffaele Frontoso; Andrea Caprioli; Valeria Antonetti; Gian Luca Autorino
To improve the efficiency of the National equine infectious anaemia (EIA) surveillance program in Italy, a three-tiered diagnostic system has been adopted. This procedure involves initial screening by ELISA (Tier 1) with test-positive samples confirmed by the agar gel immunodiffusion test (AGIDT) (Tier 2) and, in the case of ELISA positive/AGIDT negative results, final determination by immunoblot (IB) (Tier 3). During this evaluation, 74,880 samples, principally collected from two Regions of Central Italy (Latium and Abruzzo) were examined, with 44 identified as negative in AGIDT but positive in both ELISA and IB. As the majority of these reactions occurred in mules, an observational study was conducted in this hybrid equid species to investigate if there is a correlation between plasma-associated viral loads and serological reactivity, to test the hypothesis that false-negative or very weak positive AGIDT results are associated with elite control of EIA virus (EIAV) replication accompanied by reduced transmission risks. The study animals consisted of 5 mules with positive AGIDT readings, along with another 5 giving negative or very weak positive results in this test. All mules were seropositive in Elisa and IB. Samples were collected routinely during an initial 56-day observation period, prior to dexamethasone treatment lasting 10 days, to determine the effect of immune suppression (IS) on clinical, humoral and virological responses. All mules were monitored for a further 28 days from day 0 of IS. None of the animals experienced relevant clinical responses before IS and there were no significant changes in antibody levels in ELISA, IB or AGIDT. However, plasma-associated viral-RNA (vRNA) loads, as determined using TaqMan(®) based RT-PCR, showed unexpectedly high sample to sample variation in all mules, demonstrating host-mediated control of viral replication is not constant over time. Furthermore, there was no apparent correlation between vRNA loads and antibody reactivity in serological tests. Analysis of PCR products established all mules were infected with viruses possessing nucleotide sequence similarity, varying from 77 to 96%, to previously identified European EIAV strains. Following IS, all mules showed increases in plasma-associated vRNA loads, suggesting control of EIAV replication is mediated by immune responses in this hybrid species. However, only three mules showed anamnestic humoral responses to rises in viral loads, as defined by at least a four-fold increase in ELISA titre, while two remained AGIDT-negative. This study demonstrates that viral loads in equids with consistent ELISA/IB positive-AGIDT negative to very weak positive test results (Group N) can be equivalent to those that produce clearly positive results in all three serologic tests (Group P). Therefore, such animals do not pose inherently lower risks for the transmission of EIAV. Consequently, the exclusive use of the AGIDT, as prescribed by the World Organization of Animal Health (OIE) for diagnosis of EIA prior to the international movement of horses, can report as negative some EIAV-infected equids. These results dramatically underscore the necessity of combining the specificity of AGIDT with tests with higher sensitivity, such as the ELISA and the power of the IB to enhance the accuracy of EIA diagnosis.
Journal of General Virology | 2013
Jianbao Dong; Wei Zhu; Frank R. Cook; Yoshitaka Goto; Yoichiro Horii; Takeshi Haga
Although equine infectious anemia (EIA) was described more than 150 years ago, complete genomic sequences have only been obtained from two field strains of EIA virus (EIAV), EIAV(Wyoming) and EIAV(Liaoning). In 2011, EIA was detected within the distinctive feral Misaki horse population that inhabits the Toi-Cape area of southern Japan. Complete proviral sequences comprising a novel field strain were amplified directly from peripheral blood of one of these EIAV-infected horses and characterized by nucleotide sequencing. The complete provirus of Miyazaki2011-A strain is 8208 bp in length with an overall genomic organization typical of EIAV. However, this field isolate possesses just 77.2 and 78.7 % nucleotide sequence identity with the EIAV(Wyoming) and EIAV(Liaoning) strains, respectively, while similarity plot analysis suggested all three strains arose independently. Furthermore, phylogenetic studies using sequences obtained from all EIAV-infected Misaki horses against known viral strains strongly suggests these Japanese isolates comprise a separate monophyletic group.
Journal of General Virology | 2013
Michelle Quinlivan; Frank R. Cook; Rachel Kenna; John J. Callinan; Ann Cullinane
Equine infectious anemia virus (EIAV), the causative agent of equine infectious anaemia (EIA), possesses the least-complex genomic organization of any known extant lentivirus. Despite this relative genetic simplicity, all of the complete genomic sequences published to date are derived from just two viruses, namely the North American EIAV(WYOMING) (EIAV(WY)) and Chinese EIAV(LIAONING) (EIAV(LIA)) strains. In 2006, an outbreak of EIA occurred in Ireland, apparently as a result of the importation of contaminated horse plasma from Italy and subsequent iatrogenic transmission to foals. This EIA outbreak was characterized by cases of severe, sometimes fatal, disease. To begin to understand the molecular mechanisms underlying this pathogenic phenotype, complete proviral genomic sequences in the form of 12 overlapping PCR-generated fragments were obtained from four of the EIAV-infected animals, including two of the index cases. Sequence analysis of multiple molecular clones produced from each fragment demonstrated the extent of diversity within individual viral genes and permitted construction of consensus whole-genome sequences for each of the four viral isolates. In addition, complete env gene sequences were obtained from 11 animals with differing clinical profiles, despite exposure to a common EIAV source. Although the overall genomic organization of the Irish EIAV isolates was typical of that seen in all other strains, the European viruses possessed ≤80 % nucleotide sequence identity with either EIAV(WY) or EIAV(LIA). Furthermore, phylogenetic analysis suggested that the Irish EIAV isolates developed independently of the North American and Chinese viruses and that they constitute a separate monophyletic group.
Veterinary Immunology and Immunopathology | 2012
Chong Liu; Frank R. Cook; Sheila J. Cook; Jodi K. Craigo; Deborah L. Even; Charles J. Issel; Ronald C. Montelaro; David W. Horohov
Distinct from human lentivirus infection, equine infectious anemia virus (EIAV)-infected horses will eventually enter an inapparent carrier state in which virus replication is apparently controlled by adaptive immune responses. Although recrudescence of disease can occur after immune suppression, the actual immune correlate associated with protection has yet to be determined. Therefore, EIAV provides a model for investigating immune-mediated protective mechanisms against lentivirus infection. Here, we have developed a method to monitor EIAV-envelope specific cellular immunity in vivo. An EIA carrier horse with no clinical signs infected 7 years ago and 4 related experimental ponies infected 6 months previously were used in this study. Forty-four 20-mer peptides, representing the entire surface unit protein (gp90) of EIAV, were combined into 14 peptide pools and intradermally injected into the neck of EIAV-infected horses. An identical volume of saline alone was injected into a fifteenth site as a negative control. After 48 h, those sites with palpable infiltrations were measured prior to the collection of 2mm and 4mm punch biopsies. Total RNA was extracted from each 2mm biopsy for determination of CD3 and interferon-γ (IFN-γ) mRNA expression by real-time PCR. The 4mm skin biopsies were formalin-fixed and paraffin-embedded for immunohistochemistry (IHC) staining for CD3, CD20, CD25 and MAC387 (macrophage marker). Peripheral blood mononuclear cells (PBMC) were obtained prior to the injection and tested for in vitro reactivity against the same peptides. Histological examination showed that some of the envelope peptides elicited a lymphocytic cellular infiltration at the injection site, as evidenced by positive staining for CD3. Gp90 peptide-specific increases in CD3 and IFN-γ gene expression were also detected in the injection sites. Furthermore, differences were found between in vivo and in vitro responses to gp90 specific peptides. These results demonstrate a novel method for detecting in vivo cell-mediated immune responses to EIAV-specific peptides that is readily applicable to other host/pathogen systems.
Journal of Virology | 2016
Sanjay Sarkar; Lakshman Chelvarajan; Yun Young Go; Frank R. Cook; Sergey Artiushin; Shankar Mondal; Kelsi Anderson; John E. Eberth; Peter J. Timoney; Theodore S. Kalbfleisch; Ernest Bailey; Udeni B.R. Balasuriya
ABSTRACT Previous studies in our laboratory have identified equine CXCL16 (EqCXCL16) to be a candidate molecule and possible cell entry receptor for equine arteritis virus (EAV). In horses, the CXCL16 gene is located on equine chromosome 11 (ECA11) and encodes a glycosylated, type I transmembrane protein with 247 amino acids. Stable transfection of HEK-293T cells with plasmid DNA carrying EqCXCL16 (HEK-EqCXCL16 cells) increased the proportion of the cell population permissive to EAV infection from <3% to almost 100%. The increase in permissiveness was blocked either by transfection of HEK-EqCXCL16 cells with small interfering RNAs (siRNAs) directed against EqCXCL16 or by pretreatment with guinea pig polyclonal antibody against EqCXCL16 protein (Gp anti-EqCXCL16 pAb). Furthermore, using a virus overlay protein-binding assay (VOPBA) in combination with far-Western blotting, gradient-purified EAV particles were shown to bind directly to the EqCXCL16 protein in vitro. The binding of biotinylated virulent EAV strain Bucyrus at 4°C was significantly higher in HEK-EqCXCL16 cells than nontransfected HEK-293T cells. Finally, the results demonstrated that EAV preferentially infects subpopulations of horse CD14+ monocytes expressing EqCXCL16 and that infection of these cells is significantly reduced by pretreatment with Gp anti-EqCXCL16 pAb. The collective data from this study provide confirmatory evidence that the transmembrane form of EqCXCL16 likely plays a major role in EAV host cell entry processes, possibly acting as a primary receptor molecule for this virus. IMPORTANCE Outbreaks of EVA can be a source of significant economic loss for the equine industry from high rates of abortion in pregnant mares, death in young foals, establishment of the carrier state in stallions, and trade restrictions imposed by various countries. Similar to other arteriviruses, EAV primarily targets cells of the monocyte/macrophage lineage, which, when infected, are believed to play a critical role in EVA pathogenesis. To this point, however, the host-specified molecules involved in EAV binding and entry into monocytes/macrophages have not been identified. Identification of the cellular receptors for EAV may provide insights to design antivirals and better prophylactic reagents. In this study, we have demonstrated that EqCXCL16 acts as an EAV entry receptor in EAV-susceptible cells, equine monocytes. These findings represent a significant advance in our understanding of the fundamental mechanisms associated with the entry of EAV into susceptible cells.
Archives of Virology | 2014
Jianbao Dong; Frank R. Cook; Takeshi Haga; Yoichiro Horii; Junzo Norimine; Naoaki Misawa; Yoshitaka Goto; Wei Zhu
Although equine infectious anemia virus (EIAV) poses a major threat to the equine industry worldwide, the molecular epidemiology of this virus is poorly understood. Recently, an EIAV strain (EIAVMiyazaki2011-A) representing a new monophyletic group was discovered in feral horses in southern Japan. In the present study, the EIAVMiyazaki2011-A proviral genome is compared with evolutionarily divergent EIAV isolates to investigate conservation of functional elements or motifs within the long terminal repeats (LTRs) and structural genes. This analysis represents a significant step forward in increasing understanding of the molecular conservation and variation between geographically distinct strains of this equine lentivirus.
Veterinary Microbiology | 2014
Jianbao Dong; Frank R. Cook; Wei Zhu
Equine infectious anemia (EIA), also known as swamp ver, is an equine infectious disease caused by a lentivirus quine Infectious Anemia Virus or EIAV) in the family troviridae (subfamily Orthoretrovirinae). The disease itially described in 1843 (Lignee, 1843) has a worldwide stribution and was first reported in Japan in 1883 with several Japanese EIAV strains isolated in 1940s and 1960s, including EIAVGoshun, EIAVTokyo and EIAVTsukiboshi (Kono et al., 1971; Tabuchi et al., 1965, 1967). Unfortunately, there was no genomic information available for them until 2012 only very limited nucleotide sequence information (<750 bp within the gag gene) is available for EIAVGoshun and EIAVTokyo (GenBank accession numbers AB675093, AB675094) with none published for EIAVTsukiboshi. In 2000, whole genome nucleotide sequences of V70 and V26 were reported (Zheng et al., 2000a). These strains have been
Veterinary Immunology and Immunopathology | 2014
Chong Liu; Sheila J. Cook; Jodi K. Craigo; Frank R. Cook; Charles J. Issel; Ronald C. Montelaro; David W. Horohov
Unlike other lentiviruses, EIAV replication can be controlled in most infected horses leading to an inapparent carrier state free of overt clinical signs which lasts for many years. While the resolution of the initial infection is correlated with the appearance of virus specific cellular immune responses, the precise immune mechanisms responsible for control of the infection are not yet identified. Since the virus undergoes rapid mutation following infection, the immune response must also adapt to meet this challenge. We hypothesize that this adaptation involves peptide-specific recognition shifting from immunodominant variable determinants to conserved immunorecessive determinants following EIAV infection. Forty-four peptides, spanning the entire surface unit protein (gp90) of EIAV, were used to monitor peptide-specific T cell responses in vivo over a six-month period following infection. Peptides were injected intradermally and punch biopsies were collected for real-time PCR analysis to monitor the cellular peptide-specific immune responses in vivo. Similar to the CMI response to HIV infection, peptide-specific T cell recognition patterns changed over time. Early post infection (1 month), immune responses were directed to the peptides in the carboxyl-terminus variable region. By six months post infection, the peptide recognition spanned the entire gp90 sequence. These results indicate that peptide recognition broadens during EIAV infection.
Archives of Virology | 2012
Jianbao Dong; Wei Zhu; Frank R. Cook; Yoshitaka Goto; Yoichiro Horii; Takeshi Haga