Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Frank Rutsch is active.

Publication


Featured researches published by Frank Rutsch.


Nature Genetics | 2003

Mutations in ENPP1 are associated with 'idiopathic' infantile arterial calcification

Frank Rutsch; Nico Ruf; Sucheta M. Vaingankar; Mohammad R. Toliat; Anita Suk; Wolfgang Höhne; Galen Schauer; Mandy Lehmann; Tony Roscioli; Dirk Schnabel; Jörg T. Epplen; Alex S. Knisely; Andrea Superti-Furga; James McGill; Marco Filippone; Alan R. Sinaiko; Hillary Vallance; Bernd Hinrichs; Wendy Smith; Merry Ferre; Robert Terkeltaub; Peter Nürnberg

Idiopathic infantile arterial calcification (IIAC; OMIM 208000) is characterized by calcification of the internal elastic lamina of muscular arteries and stenosis due to myointimal proliferation. We analyzed affected individuals from 11 unrelated kindreds and found that IIAC was associated with mutations that inactivated ecto-nucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1). This cell surface enzyme generates inorganic pyrophosphate (PPi), a solute that regulates cell differentiation and serves as an essential physiologic inhibitor of calcification.


Nature Medicine | 2012

SAMHD1 restricts HIV-1 infection in resting CD4 + T cells

Hanna-Mari Baldauf; Xiaoyu Pan; Elina Erikson; Sarah Schmidt; Waaqo Daddacha; Manja Burggraf; Kristina Schenkova; Ina Ambiel; Guido H. Wabnitz; Thomas Gramberg; Sylvia Panitz; Egbert Flory; Nathaniel R. Landau; Serkan Sertel; Frank Rutsch; Felix Lasitschka; Baek Kim; Renate König; Oliver T. Fackler; Oliver T. Keppler

Unlike activated CD4+ T cells, resting CD4+ T cells are highly resistant to productive HIV-1 infection. Early after HIV-1 entry, a major block limits reverse transcription of incoming viral genomes. Here we show that the deoxynucleoside triphosphate triphosphohydrolase SAMHD1 prevents reverse transcription of HIV-1 RNA in resting CD4+ T cells. SAMHD1 is abundantly expressed in resting CD4+ T cells circulating in peripheral blood and residing in lymphoid organs. The early restriction to infection in unstimulated CD4+ T cells is overcome by HIV-1 or HIV-2 virions into which viral Vpx is artificially or naturally packaged, respectively, or by addition of exogenous deoxynucleosides. Vpx-mediated proteasomal degradation of SAMHD1 and elevation of intracellular deoxynucleotide pools precede successful infection by Vpx-carrying HIV. Resting CD4+ T cells from healthy donors following SAMHD1 silencing or from a patient with Aicardi-Goutières syndrome homozygous for a nonsense mutation in SAMHD1 were permissive for HIV-1 infection. Thus, SAMHD1 imposes an effective restriction to HIV-1 infection in the large pool of noncycling CD4+ T cells in vivo. Bypassing SAMHD1 was insufficient for the release of viral progeny, implicating other barriers at later stages of HIV replication. Together, these findings may unveil new ways to interfere with the immune evasion and T cell immunopathology of pandemic HIV-1.


American Journal of Pathology | 2001

PC-1 Nucleoside Triphosphate Pyrophosphohydrolase Deficiency in Idiopathic Infantile Arterial Calcification

Frank Rutsch; Sucheta M. Vaingankar; Kristen Johnson; Ira D. Goldfine; Betty A. Maddux; Petra Schauerte; Hermann Kalhoff; Kimihiko Sano; William A. Boisvert; Andrea Superti-Furga; Robert Terkeltaub

Inogranic pyrophosphate (PPi) inhibits hydroxyapatite deposition, and mice deficient in the PPi-generating nucleoside triphosphate pyrophosphohydrolase (NTPPPH) Plasma cell membrane glycoprotein-1 (PC-1) develop peri-articular and arterial calcification in early life. In idiopathic infantile arterial calcification (IIAC), hydroxyapatite deposition and smooth muscle cell (SMC) proliferation occur, sometimes associated with peri-articular calcification. Thus, we assessed PC-1 expression and PPi metabolism in a 25-month-old boy with IIAC and peri-articular calcifications. Plasma PC-1 was <1 ng/ml by enzyme-linked immunosorbent assay in the proband, but 10 to 30 ng/ml in unaffected family members and controls. PC-1 functioned to raise extracellular PPi in cultured aortic SMCs. However, PC-1 was sparse in temporal artery lesion SMCs in the proband, unlike the case for SMCs in atherosclerotic carotid artery lesions of unrelated adults. Proband plasma and explant-cultured dermal fibroblast NTPPPH and PPi were markedly decreased. The proband was heterozygous at the PC-1 locus, and sizes of PC-1 mRNA and polypeptide, and the PC-1 mRNA-coding region sequence were normal in proband fibroblasts. However, immunoreactive PC-1 protein was relatively sparse in proband fibroblasts. In conclusion, deficient extracellular PPi and a deficiency of PC-1 NTPPPH activity can be associated with human infantile arterial and peri-articular calcification, and may help explain the sharing of certain phenotypic features between some IIAC patients and PC-1-deficient mice.


PLOS Pathogens | 2011

SAMHD1-Deficient CD14+ Cells from Individuals with Aicardi-Goutieres Syndrome Are Highly Susceptible to HIV-1 Infection

André Berger; Andreas F. R. Sommer; Jenny Zwarg; Matthias Hamdorf; Karin Welzel; Nicole Esly; Sylvia Panitz; Andreas Reuter; Irene Ramos; Asavari Jatiani; Lubbertus C. F. Mulder; Ana Fernandez-Sesma; Frank Rutsch; Viviana Simon; Renate König; Egbert Flory

Myeloid blood cells are largely resistant to infection with human immunodeficiency virus type 1 (HIV-1). Recently, it was reported that Vpx from HIV-2/SIVsm facilitates infection of these cells by counteracting the host restriction factor SAMHD1. Here, we independently confirmed that Vpx interacts with SAMHD1 and targets it for ubiquitin-mediated degradation. We found that Vpx-mediated SAMHD1 degradation rendered primary monocytes highly susceptible to HIV-1 infection; Vpx with a T17A mutation, defective for SAMHD1 binding and degradation, did not show this activity. Several single nucleotide polymorphisms in the SAMHD1 gene have been associated with Aicardi-Goutières syndrome (AGS), a very rare and severe autoimmune disease. Primary peripheral blood mononuclear cells (PBMC) from AGS patients homozygous for a nonsense mutation in SAMHD1 (R164X) lacked endogenous SAMHD1 expression and support HIV-1 replication in the absence of exogenous activation. Our results indicate that within PBMC from AGS patients, CD14+ cells were the subpopulation susceptible to HIV-1 infection, whereas cells from healthy donors did not support infection. The monocytic lineage of the infected SAMHD1 -/- cells, in conjunction with mostly undetectable levels of cytokines, chemokines and type I interferon measured prior to infection, indicate that aberrant cellular activation is not the cause for the observed phenotype. Taken together, we propose that SAMHD1 protects primary CD14+ monocytes from HIV-1 infection confirming SAMHD1 as a potent lentiviral restriction factor.


American Journal of Human Genetics | 2012

Generalized arterial calcification of infancy and pseudoxanthoma elasticum can be caused by mutations in either ENPP1 or ABCC6.

Yvonne Nitschke; G. Baujat; Ulrike Botschen; Tanja Wittkampf; Marcel du Moulin; Jacqueline Stella; Martine Le Merrer; Geneviève Guest; K Lambot; Marie-Frederique Tazarourte-Pinturier; Nicolas Chassaing; O. Roche; Ilse Feenstra; Karen J. Loechner; Charu Deshpande; Samuel J. Garber; Rashmi Chikarmane; Beat Steinmann; Tatevik Shahinyan; Loreto Martorell; Justin H. Davies; Wendy Smith; Stephen G. Kahler; Mignon McCulloch; Elizabeth Wraige; Lourdes Loidi; Wolfgang Höhne; Ludovic Martin; Smail Hadj-Rabia; Robert Terkeltaub

Spontaneous pathologic arterial calcifications in childhood can occur in generalized arterial calcification of infancy (GACI) or in pseudoxanthoma elasticum (PXE). GACI is associated with biallelic mutations in ENPP1 in the majority of cases, whereas mutations in ABCC6 are known to cause PXE. However, the genetic basis in subsets of both disease phenotypes remains elusive. We hypothesized that GACI and PXE are in a closely related spectrum of disease. We used a standardized questionnaire to retrospectively evaluate the phenotype of 92 probands with a clinical history of GACI. We obtained the ENPP1 genotype by conventional sequencing. In those patients with less than two disease-causing ENPP1 mutations, we sequenced ABCC6. We observed that three GACI patients who carried biallelic ENPP1 mutations developed typical signs of PXE between 5 and 8 years of age; these signs included angioid streaks and pseudoxanthomatous skin lesions. In 28 patients, no disease-causing ENPP1 mutation was found. In 14 of these patients, we detected pathogenic ABCC6 mutations (biallelic mutations in eight patients, monoallelic mutations in six patients). Thus, ABCC6 mutations account for a significant subset of GACI patients, and ENPP1 mutations can also be associated with PXE lesions in school-aged children. Based on the considerable overlap of genotype and phenotype of GACI and PXE, both entities appear to reflect two ends of a clinical spectrum of ectopic calcification and other organ pathologies, rather than two distinct disorders. ABCC6 and ENPP1 mutations might lead to alterations of the same physiological pathways in tissues beyond the artery.


Nature Genetics | 2009

Identification of a putative lysosomal cobalamin exporter altered in the cblF defect of vitamin B12 metabolism

Frank Rutsch; Susann Gailus; Isabelle Racine Miousse; Terttu Suormala; Corinne Sagné; Mohammad R. Toliat; Gudrun Nürnberg; Tanja Wittkampf; Insa Buers; Azita Sharifi; Martin Stucki; Christian F. W. Becker; Matthias R. Baumgartner; Horst Robenek; Thorsten Marquardt; Wolfgang Höhne; Bruno Gasnier; David S. Rosenblatt; Brian Fowler; Peter Nürnberg

Vitamin B12 (cobalamin) is essential in animals for metabolism of branched chain amino acids and odd chain fatty acids, and for remethylation of homocysteine to methionine. In the cblF inborn error of vitamin B12 metabolism, free vitamin accumulates in lysosomes, thus hindering its conversion to cofactors. Using homozygosity mapping in 12 unrelated cblF individuals and microcell-mediated chromosome transfer, we identified a candidate gene on chromosome 6q13, LMBRD1, encoding LMBD1, a lysosomal membrane protein with homology to lipocalin membrane receptor LIMR. We identified five different frameshift mutations in LMBRD1 resulting in loss of LMBD1 function, with 18 of the 24 disease chromosomes carrying the same mutation embedded in a common 1.34-Mb haplotype. Transfection of fibroblasts of individuals with cblF with wild-type LMBD1 rescued cobalamin coenzyme synthesis and function. This work identifies LMBRD1 as the gene underlying the cblF defect of cobalamin metabolism and suggests that LMBD1 is a lysosomal membrane exporter for cobalamin.


Circulation-cardiovascular Genetics | 2008

Hypophosphatemia, hyperphosphaturia, and bisphosphonate treatment are associated with survival beyond infancy in generalized arterial calcification of infancy.

Frank Rutsch; Petra Boyer; Yvonne Nitschke; Nico Ruf; Bettine Lorenz-Depierieux; Tanja Wittkampf; Gabriele Weissen-Plenz; Rudolf Josef Fischer; Zulf Mughal; John Welbourn Gregory; Justin H. Davies; Chantal Loirat; Tim M. Strom; Dirk Schnabel; Peter Nurnberg; Robert Terkeltaub

Background—Generalized arterial calcification of infancy has been reported to be frequently lethal, and the efficiency of any therapy, including bisphosphonates, is unknown. A phosphate-poor diet markedly increases survival of NPP1 null mice, a model of generalized arterial calcification of infancy. Methods and Results—We performed a multicenter genetic study and retrospective observational analysis of 55 subjects affected by generalized arterial calcification of infancy to identify prognostic factors. Nineteen (34%) patients survived the critical period of infancy. In all 8 surviving patients tested, hypophosphatemia due to reduced renal tubular phosphate reabsorption developed during childhood. Eleven of 17 (65%) patients treated with bisphosphonates survived. Of 26 patients who survived their first day of life and were not treated with bisphosphonates only 8 (31%) patients survived beyond infancy. Forty different homozygous or compound heterozygous mutations, including 16 novel mutations in ENPP1, were found in 41 (75%) of the 55 patients. Twenty-nine (71%) of these 41 patients died in infancy (median, 30 days). Seven of the 14 (50%) patients without ENPP1 mutations died in infancy (median, 9 days). When present on both alleles, the mutation p.P305T was associated with death in infancy in all 5 cases; otherwise, no clear genotype-phenotype correlation was seen. Conclusion—ENPP1 coding region mutations are associated with generalized arterial calcification of infancy in ≈75% of subjects. Except for the p.P305T mutation, which was universally lethal when present on both alleles, the identified ENPP1 mutations per se have no discernable effect on survival. However, survival seems to be associated with hypophosphatemia linked with hyperphosphaturia and also with bisphosphonate treatment.


Circulation Research | 2011

Genetics in Arterial Calcification: Pieces of a Puzzle and Cogs in a Wheel

Frank Rutsch; Yvonne Nitschke; Robert Terkeltaub

Artery calcification reflects an admixture of factors such as ectopic osteochondral differentiation with primary host pathological conditions. We review how genetic factors, as identified by human genome-wide association studies, and incomplete correlations with various mouse studies, including knockout and strain analyses, fit into “pieces of the puzzle” in intimal calcification in human atherosclerosis, and artery tunica media calcification in aging, diabetes mellitus, and chronic kidney disease. We also describe in sharp contrast how ENPP1, CD73, and ABCC6 serve as “cogs in a wheel” of arterial calcification. Specifically, each is a minor component in the function of a much larger network of factors that exert balanced effects to promote and suppress arterial calcification. For the network to normally suppress spontaneous arterial calcification, the “cogs” ENPP1, CD73, and ABCC6 must be present and in working order. Monogenic ENPP1, CD73, and ABCC6 deficiencies each drive a molecular pathophysiology of closely related but phenotypically different diseases (generalized arterial calcification of infancy (GACI), pseudoxanthoma elasticum (PXE) and arterial calcification caused by CD73 deficiency (ACDC)), in which premature onset arterial calcification is a prominent but not the sole feature.


American Journal of Human Genetics | 2015

SLC39A8 Deficiency: A Disorder of Manganese Transport and Glycosylation

Julien H. Park; Max Hogrebe; Marianne Grüneberg; Ingrid DuChesne; Ava L. von der Heiden; Janine Reunert; Karl P. Schlingmann; Kym M. Boycott; Chandree L. Beaulieu; Aziz Mhanni; A. Micheil Innes; Konstanze Hörtnagel; Saskia Biskup; Eva M. Gleixner; Gerhard Kurlemann; Barbara Fiedler; Heymut Omran; Frank Rutsch; Yoshinao Wada; Konstantinos Tsiakas; René Santer; Daniel W. Nebert; Stephan Rust; Thorsten Marquardt

SLC39A8 is a membrane transporter responsible for manganese uptake into the cell. Via whole-exome sequencing, we studied a child that presented with cranial asymmetry, severe infantile spasms with hypsarrhythmia, and dysproportionate dwarfism. Analysis of transferrin glycosylation revealed severe dysglycosylation corresponding to a type II congenital disorder of glycosylation (CDG) and the blood manganese levels were below the detection limit. The variants c.112G>C (p.Gly38Arg) and c.1019T>A (p.Ile340Asn) were identified in SLC39A8. A second individual with the variants c.97G>A (p.Val33Met) and c.1004G>C (p.Ser335Thr) on the paternal allele and c.610G>T (p.Gly204Cys) on the maternal allele was identified among a group of unresolved case subjects with CDG. These data demonstrate that variants in SLC39A8 impair the function of manganese-dependent enzymes, most notably β-1,4-galactosyltransferase, a Golgi enzyme essential for biosynthesis of the carbohydrate part of glycoproteins. Impaired galactosylation leads to a severe disorder with deformed skull, severe seizures, short limbs, profound psychomotor retardation, and hearing loss. Oral galactose supplementation is a treatment option and results in complete normalization of glycosylation. SLC39A8 deficiency links a trace element deficiency with inherited glycosylation disorders.


Journal of Inherited Metabolic Disease | 2006

Inborn error of amino acid synthesis : Human glutamine synthetase deficiency

Johannes Häberle; Boris Görg; Annick Toutain; Frank Rutsch; Jean-François Benoist; Antoinette Gelot; Annie-Laure Suc; Hans Georg Koch; Freimut Schliess; Dieter Häussinger

SummaryGlutamine synthetase (GS) is ubiquitously expressed in human tissues, being involved in ammonia detoxification and interorgan nitrogen flux. Inherited systemic deficiency of glutamine based on a defect of glutamine synthetase was recently described in two newborns with an early fatal course of disease. Glutamine was largely absent in their serum, urine and cerebrospinal fluid. Each of the patients had a homozygous mutation in the glutamine synthetase gene and enzymatic investigations confirmed that these mutations lead to a severely reduced glutamine synthetase activity. From the observation in the first patients with congenital glutamine synthetase deficiency, brain malformation can be expected as one of the leading signs. In addition, other organ systems are probably involved as observed in one of the index patients who suffered from severe enteropathy and necrolytic erythema of the skin. Deficiency of GS has to be added to the list of inherited metabolic disorders as a rare example of a defect in the biosynthesis of an amino acid.

Collaboration


Dive into the Frank Rutsch's collaboration.

Top Co-Authors

Avatar

Yvonne Nitschke

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Insa Buers

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Nico Ruf

Max Delbrück Center for Molecular Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brian Fowler

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Susann Gailus

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Tanja Wittkampf

Boston Children's Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge