Frank Uwe Renner
IMEC
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Frank Uwe Renner.
Nature | 2006
Frank Uwe Renner; A. Stierle; H. Dosch; D. M. Kolb; Tien-Lin Lee; J. Zegenhagen
Corrosion destroys more than three per cent of the worlds GDP. Recently, the electrochemical decomposition of metal alloys has been more productively harnessed to produce porous materials with diverse technological potential. High-resolution insight into structure formation during electrocorrosion is a prerequisite for an atomistic understanding and control of such electrochemical surface processes. Here we report atomic-scale observations of the initial stages of corrosion of a Cu3Au(111) single crystal alloy within a sulphuric acid solution. We monitor, by in situ X-ray diffraction with picometre-scale resolution, the structure and chemical composition of the electrolyte/alloy interface as the material decomposes. We reveal the microscopic structural changes associated with a general passivation phenomenon of which the origin has been hitherto unclear. We observe the formation of a gold-enriched single-crystal layer that is two to three monolayers thick, and has an unexpected inverted (CBA-) stacking sequence. At higher potentials, we find that this protective passivation layer dewets and pure gold islands are formed; such structures form the templates for the growth of nanoporous metals. Our experiments are carried out on a model single-crystal system. However, the insights should equally apply within a crystalline grain of an associated polycrystalline electrode fabricated from many other alloys exhibiting a large difference in the standard potential of their constituents, such as stainless steel (see ref. 5 for example) or alloys used for marine applications, such as CuZn or CuAl.
Science | 2013
Maria Jazmin Duarte; Julia Klemm; Sebasian Oliver Klemm; Karl Johann Jakob Mayrhofer; Martin Stratmann; Sergiy Borodin; Aldo H. Romero; Milad Madinehei; Daniel Crespo; J. Serrano; Stephan S. A. Gerstl; Pyuck-Pa Choi; Dierk Raabe; Frank Uwe Renner
Rust Resistance The rusting of iron and steel can be prevented through the addition of 11% or more chromium. The addition of molybdenum can enhance the corrosion resistance, with a complex interplay between the Cr and Mo atoms. However, if chemical variations exist, corrosion can still occur in localized regions or if the surface layer is mechanically abraded. Duarte et al. (p. 372) studied the corrosive failure of an iron-based glassy alloy. A combination of atom probe tomography, electron microscopy, and x-ray diffraction was used to build up a near atomistic picture of local variations in the metal as it was heated and allowed to crystallize, and the impact these processes have on the corrosion resistance. Measurements of the local composition of a steel alloy are correlated with the corrosion resistance. Ultrathin passive films effectively prevent the chemical attack of stainless steel grades in corrosive environments; their stability depends on the interplay between structure and chemistry of the constituents iron, chromium, and molybdenum (Fe-Cr-Mo). Carbon (C), and eventually boron (B), are also important constituents of steels, although in small quantities. In particular, nanoscale inhomogeneities along the surface can have an impact on material failure but are still poorly understood. Addressing a stainless-type glass-forming Fe50Cr15Mo14C15B6 alloy and using a combination of complementary high-resolution analytical techniques, we relate near-atomistic insights into increasingly inhomogeneous nanostructures with time- and element-resolved dissolution behavior. The progressive elemental partitioning on the nanoscale determines the degree of passivation. A detrimental transition from Cr-controlled passivity to Mo-controlled breakdown is dissected atom by atom, demonstrating the importance of nanoscale knowledge for understanding corrosion.
Journal of the American Chemical Society | 2011
Aparna Pareek; Sergiy Borodin; Asif Bashir; Genesis Ngwa Ankah; Patrick Keil; Gerald Andreas Eckstein; Michael Rohwerder; Martin Stratmann; Yvonne Gründer; Frank Uwe Renner
Dealloying is widely utilized but is a dangerous corrosion process as well. Here we report an atomistic picture of the initial stages of electrochemical dealloying of the model system Cu(3)Au (111). We illuminate the structural and chemical changes during the early stages of dissolution up to the critical potential, using a unique combination of advanced surface-analytical tools. Scanning tunneling microscopy images indicate an interlayer exchange of topmost surface atoms during initial dealloying, while scanning Auger-electron microscopy data clearly reveal that the surface is fully covered by a continuous Au-rich layer at an early stage. Initiating below this first layer a transformation from stacking-reversed toward substrate-oriented Au surface structures is observed close to the critical potential. We further use the observed structural transitions as a reference process to evaluate the mechanistic changes induced by a thiol-based model-inhibition layer applied to suppress surface diffusion. The initial ultrathin Au layer is stabilized with the intermediate island morphology completely suppressed, along an anodic shift of the breakdown potential. Thiol-modification induces a peculiar surface microstructure in the form of microcracks exhibiting a nanoporous core. On the basis of the presented atomic-scale observations, an interlayer exchange mechanism next to pure surface diffusion becomes obvious which may be controlling the layer thickness and its later change in orientation.
Review of Scientific Instruments | 2004
A. Stierle; A. Steinhäuser; A. Rühm; Frank Uwe Renner; R. Weigel; N. Kasper; H. Dosch
A dedicated beamline for the Max-Planck-Institut fur Metallforschung was recently taken into operation at the Angstro/mquelle Karlsruhe (ANKA). Here we describe the layout of the beamline optics and the experimental end-station, consisting of a heavy duty multiple circle diffractometer. For both a new design was realized, combining a maximum flexibility in the beam properties [white, pink, (focused) monochromatic, energy range 6–20 keV] with a special diffractometer for heavy sample environments up to 500 kg, that can be run in different geometrical modes. In addition the angular-reciprocal space transformations for the diffractometer in use are derived, which allows an operation of the instrument in the convenient six circle mode. As an example, results from surface x-ray diffraction on a Cu3Au(111) single crystal are presented.
Physical Chemistry Chemical Physics | 2010
Dimitar Borissov; Aparna Pareek; Frank Uwe Renner; Michael Rohwerder
In this communication, electrodeposition of Zn from 60-40 mol% ZnCl(2)-1-butyl-3-methylimidazolium chloride (BMIC) ionic liquid on Au substrates has been investigated. For the first time, initial stages of Zn electrocrystallization from BMIC has been studied by in situ X-ray diffraction (XRD) employing synchrotron radiation, which showed an initial epitaxial deposition of Zn and hexagonal Au(1.2)Zn(8.8) phases on Au(111) single crystal substrates. In the later stages of electrodeposition, phase analysis showed a formation of several Zn-Au intermetallics, namely AuZn, AuZn(3), and Au(1.2)Zn(8.8), along with the Zn phase.
Review of Scientific Instruments | 2007
Frank Uwe Renner; Yvonne Gründer; J. Zegenhagen
We report on a new electrochemical cell setup, combined with a portable UHV chamber, for in situ x-ray diffraction using synchrotron radiation. In contrast to more traditional electrochemical sample preparation schemes, atomically clean and well-ordered surfaces are routinely prepared by UHV methods, even in the case of reactive elements or alloys. Samples can be transferred from larger UHV systems into the portable chamber without exposure to ambient air. They can then be studied successively in UHV, in controlled gas atmospheres, and in contact with electrolyte solutions under applied electrochemical potential. The electrochemical setup employs a droplet geometry, which guarantees good electrochemical conditions during in situ x-ray measurements combined with voltammetry. We present first experimental results of Cu deposition on GaAs(001) and on freshly produced nanometric Pd(001) islands on Cu(0.83)Pd(0.17)(001), respectively.
PLOS ONE | 2016
Patricia Losada-Pérez; Mehran Khorshid; Frank Uwe Renner
Despite the environmentally friendly reputation of ionic liquids (ILs), their safety has been recently questioned given their potential as cytotoxic agents. The fundamental mechanisms underlying the interactions between ILs and cells are less studied and by far not completely understood. Biomimetic films are here important biophysical model systems to elucidate fundamental aspects and mechanisms relevant for a large range of biological interaction ranging from signaling to drug reception or toxicity. Here we use dissipative quartz crystal microbalance QCM-D to examine the effect of aqueous imidazolium-based ionic liquid mixtures on solid-supported biomimetic membranes. Specifically, we assess in real time the effect of the cation chain length and the anion nature on a supported vesicle layer of the model phospholipid DMPC. Results indicate that interactions are mainly driven by the hydrophobic components of the IL, which significantly distort the layer and promote vesicle rupture. Our analyses evidence the gradual decrease of the main phase transition temperature upon increasing IL concentration, reflecting increased disorder by weakening of lipid chain interactions. The degree of rupture is significant for ILs with long hydrophobic cation chains and large hydrophobic anions whose behavior is reminiscent of that of antimicrobial peptides.
Review of Scientific Instruments | 2011
Markus Valtiner; Genesis Ngwa Ankah; Asif Bashir; Frank Uwe Renner
We report the design of an improved electrochemical cell for atomic force microscope measurements in corrosive electrochemical environments. Our design improvements are guided by experimental requirements for studying corrosive reactions such as selective dissolution, dealloying, pitting corrosion, and∕or surface and interface forces at electrified interfaces. Our aim is to examine some of the limitations of typical electrochemical scanning probe microscopy (SPM) experiments and in particular to outline precautions and cell-design elements, which must necessarily be taken into account in order to obtain reliable experimental results. In particular, we discuss electrochemical requirements for typical electrochemical SPM experiments and introduce novel design features to avoid common issues such as crevice formations; we discuss the choice of electrodes and contaminations from ions of reference electrodes. We optimize the cell geometry and introduce standard samples for electrochemical AFM experiments. We have tested the novel design by performing force-distance spectroscopy as a function of the applied electrochemical potential between a bare gold electrode surface and a SAM-coated AFM tip. Topography imaging was tested by studying the well-known dealloying process of a Cu(3)Au(111) surface up to the critical potential. Our design improvements should be equally applicable to in situ electrochemical scanning tunneling microscope cells.
Biointerphases | 2016
Sumit Kumar Pramanik; Senne Seneca; Anitha Ethirajan; Shova Neupane; Frank Uwe Renner; Patricia Losada-Pérez
The authors report on the effect of ionic strength on the formation of supported vesicle layers of anionic phospholipids 1,2-dimyristoyl-sn-glycero-3-phospho-rac-glycerol (DMPG) and dimyristoylphosphatidylserine (DMPS) onto gold. Using quartz crystal microbalance with dissipation monitoring the authors show that vesicle adsorption is mainly governed by NaCl concentration, reflecting the importance of electrostatic interactions in anionic lipids, as compared to zwitterionic 1,2-dimyristoyl-sn-glycero-3-phosphocholine. At low ionic strength, low or no adsorption is observed as a result of vesicle-vesicle electrostatic repulsion. At medium ionic strength, the negative charges of DMPG and DMPS are screened resulting in larger adsorption and a highly dissipative intact vesicle layer. In addition, DMPS exhibits a peculiar behavior at high ionic strength that depends on the temperature of the process.
Advanced Materials | 2015
Frank Uwe Renner; Genesis Ngwa Ankah; Asif Bashir; Duancheng Ma; P. Ulrich Biedermann; Buddha Ratna Shrestha; Monika Nellessen; Anahita Khorashadizadeh; Patricia Losada-Pérez; Maria Jazmin Duarte; Dierk Raabe; Markus Valtiner
On self-assembled monolayer-covered Cu-Au substrates, localized volume shrinkage at initial dealloying sites leads to cracks within the attacked regions. It is started from well-controlled surface structures to gain fundamental insights in the driving mechanisms of localized corrosion and crack formation. Both the crack density and the crack morphology are critically dependent on surface orientation, crystallography, and inhibitor molecule species.