Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Frank Wacker is active.

Publication


Featured researches published by Frank Wacker.


Journal of Magnetic Resonance Imaging | 2008

MR‐guided intravascular interventions: Techniques and applications

Michael Bock; Frank Wacker

Magnetic resonance imaging (MRI) offers several advantages over other imaging modalities that make it an attractive imaging tool for diagnostic and therapeutic procedures. This tremendous potential of MRI has provided the rationale for increased attention toward MR‐guided endovascular interventions. MR guidance has been used recently to navigate endovascular catheters and deliver stents, vena cava filters, embolization materials, and septum closure devices. However, its potential goes beyond just copying existing procedures toward the development of new minimally invasive techniques that cannot be performed with conventional guiding techniques. Because of technical limitations and safety issues associated with some of the currently available devices, a limited number of clinical studies have been performed so far. The overall success for this developing field requires considerable interdisciplinary research within both the interventional and the MR community. Only through a combined effort can this complex technology find its way into clinical practice. This review discusses the hardware and software improvements that have helped to advance endovascular interventions under MR imaging guidance from a pure research tool to become a clinical reality. In addition, technical and safety issues specific to endovascular MR image guidance will be described and practical applications will be shown that take advantage of the benefits of MR for endovascular interventions. J. Magn. Reson. Imaging 2008;27:326–338.


Acta Radiologica | 2007

Assessment of 3D-TOF-MRA at 3.0 tesla in the characterization of the angioarchitecture of cerebral arteriovenous malformations: a preliminary study:

Jens O. Heidenreich; A. Schilling; F. Unterharnscheidt; Ruediger Stendel; S. Hartlieb; Frank Wacker; P. Schlattmann; Karl-Jürgen Wolf; H. Bruhn

Background: The characterization of brain arteriovenous malformation (AVM) angioarchitecture remains rewarding in planning and predicting therapy. The increased signal-to-noise ratio at higher field strength has been found advantageous in vascular brain pathologies. Purpose: To evaluate whether 3.0T time-of-flight (TOF) magnetic resonance angiography (MRA) is superior to 1.5T TOF-MRA for the characterization of cerebral AVMs. Material and Methods: Fifteen patients with AVM underwent TOF-MRA at 3.0T and 1.5T and catheter angiography (DSA), which was used as the gold standard. Blinded readers scored image quality on a four-point scale, nidus size, and number of feeding arteries and draining veins. Results: Image quality of TOF-MRA at 3.0T was superior to 1.5T but still inferior to DSA. Evaluation of nidus size was equally good at 3.0T and 1.5T for all AVMs. In small AVMs, however, there was a tendency of size overestimation at 3.0T. MRA at 3.0T had increased detection rates for feeding arteries (+21%) and superficial (+13%) and deep draining veins (+33%) over 1.5T MRA. Conclusion: 3.0T TOF-MRA offers superior characterization of AVM angioarchitecture compared with 1.5T TOF-MRA. The image quality of MRA at both 3.0 and 1.5T is still far from equal to DSA, which remains the gold standard for characterization of AVM.


Proceedings of SPIE | 2009

Accuracy of x-ray image-based 3D localization from two C-arm views: a comparison between an ideal system and a real device

Alexander Brost; Norbert Strobel; Liron Yatziv; Wesley D. Gilson; Bernhard Meyer; Joachim Hornegger; Jonathan S. Lewin; Frank Wacker

arm X-ray imaging devices are commonly used for minimally invasive cardiovascular or other interventional procedures. Calibrated state-of-the-art systems can, however, not only be used for 2D imaging but also for three-dimensional reconstruction either using tomographic techniques or even stereotactic approaches. To evaluate the accuracy of X-ray object localization from two views, a simulation study assuming an ideal imaging geometry was carried out first. This was backed up with a phantom experiment involving a real C-arm angiography system. Both studies were based on a phantom comprising five point objects. These point objects were projected onto a flat-panel detector under different C-arm view positions. The resulting 2D positions were perturbed by adding Gaussian noise to simulate 2D point localization errors. In the next step, 3D point positions were triangulated from two views. A 3D error was computed by taking differences between the reconstructed 3D positions using the perturbed 2D positions and the initial 3D positions of the five points. This experiment was repeated for various C-arm angulations involving angular differences ranging from 15° to 165°. The smallest 3D reconstruction error was achieved, as expected, by views that were 90° degrees apart. In this case, the simulation study yielded a 3D error of 0.82 mm ± 0.24 mm (mean ± standard deviation) for 2D noise with a standard deviation of 1.232 mm (4 detector pixels). The experimental result for this view configuration obtained on an AXIOM Artis C-arm (Siemens AG, Healthcare Sector, Forchheim, Germany) system was 0.98 mm ± 0.29 mm, respectively. These results show that state-of-the-art C-arm systems can localize instruments with millimeter accuracy, and that they can accomplish this almost as well as an idealized theoretical counterpart. High stereotactic localization accuracy, good patient access, and CT-like 3D imaging capabilities render state-of-the-art C-arm systems ideal devices for X-ray based minimally invasive procedures.


European Radiology | 2009

The value of combined soft-tissue and vessel visualisation before transarterial chemoembolisation of the liver using C-arm computed tomography

B Meyer; M. Witschel; Bernd Frericks; M. Voges; W. Hopfenmüller; Kj Wolf; Frank Wacker

The purpose of the study was to prospectively evaluate intrahepatic vessel depiction on C-arm CT (CACT) and the influence of the additional combined tissue and three-dimensional vessel visualisation on the positioning of the TACE catheter in comparison to DSA alone. Thirty consecutive patients scheduled for their first transarterial chemoembolisation underwent biphasic CACT and DSA of the liver. After assessing the DSA images for procedure planning, the CACT images were reviewed. The number and origin of the tumour-feeding arteries and the ideal position of the catheter for TACE on both DSA and CACT were assessed and correlated. The number of vessels identified as tumour feeders in each patient was significantly higher using additional CACT than on DSA alone (CACT: 4.0 ± 1.7; DSA: 3.3 ± 1.4; P = 0.003, t-test). After considering CACT, in 50% of the patients the catheter position was changed for TACE. Segmental portal vein thrombosis was seen in three patients on CACT, but in only one on DSA. As CACT depicts soft tissue and small vessels with high spatial resolution, tumour vessel allocation is facilitated, and ideal catheter position for TACE can be more accurately identified. The high impact of CACT on the TACE procedure suggests the benefits of its routine use for all patients undergoing their first TACE.


Journal of Magnetic Resonance Imaging | 2013

Rapid freehand MR-guided percutaneous needle interventions: an image-based approach to improve workflow and feasibility.

Eva Rothgang; Wesley D. Gilson; Frank Wacker; Joachim Hornegger; Christine H. Lorenz; Clifford R. Weiss

To develop and evaluate software‐based methods for improving the workflow of magnetic resonance (MR)‐guided percutaneous interventions.


PLOS ONE | 2012

In hypertrophic cardiomyopathy reduction of relative resting myocardial blood flow is related to late enhancement, T2-signal and LV wall thickness

Katja Hueper; Antonia Zapf; Jan Skrok; Aurelio Pinheiro; Tom Goldstein; Jie Zheng; Stefan L. Zimmerman; Ihab R. Kamel; Roselle Abraham; Frank Wacker; David A. Bluemke; Theodore P. Abraham; Jens Vogel-Claussen

Objectives To quantify resting myocardial blood flow (MBF) in the left ventricular (LV) wall of HCM patients and to determine the relationship to important parameters of disease: LV wall thickness, late gadolinium enhancement (LGE), T2-signal abnormalities (dark and bright signal), LV outflow tract obstruction and age. Materials and Methods Seventy patients with proven HCM underwent cardiac MRI. Absolute and relative resting MBF were calculated from cardiac perfusion MRI by using the Fermi function model. The relationship between relative MBF and LV wall thickness, T2-signal abnormalities (T2 dark and T2 bright signal), LGE, age and LV outflow gradient as determined by echocardiography was determined using simple and multiple linear regression analysis. Categories of reduced and elevated perfusion in relation to non- or mildly affected reference segments were defined, and T2-signal characteristics and extent as well as pattern of LGE were examined. Statistical testing included linear and logistic regression analysis, unpaired t-test, odds ratios, and Fisher’s exact test. Results 804 segments in 70 patients were included in the analysis. In a simple linear regression model LV wall thickness (p<0.001), extent of LGE (p<0.001), presence of edema, defined as focal T2 bright signal (p<0.001), T2 dark signal (p<0.001) and age (p = 0.032) correlated inversely with relative resting MBF. The LV outflow gradient did not show any effect on resting perfusion (p = 0.901). Multiple linear regression analysis revealed that LGE (p<0.001), edema (p = 0.026) and T2 dark signal (p = 0.019) were independent predictors of relative resting MBF. Segments with reduced resting perfusion demonstrated different LGE patterns compared to segments with elevated resting perfusion. Conclusion In HCM resting MBF is significantly reduced depending on LV wall thickness, extent of LGE, focal T2 signal abnormalities and age. Furthermore, different patterns of perfusion in HCM patients have been defined, which may represent different stages of disease.


Radiology | 2010

MR Monitoring of NaCl-enhanced Radiofrequency Ablations: Observations on Low- and High-Field-Strength MR Images with Pathologic Correlation

Sherif Gamal Nour; S. Nahum Goldberg; Frank Wacker; Shervin Rafie; Simi Paul; Jens O. Heidenreich; Mark S. Rodgers; Fadi W. Abdul-Karim; Jeffrey L. Duerk; Jonathan S. Lewin

PURPOSE To test the hypothesis that magnetic resonance (MR) imaging can be used to monitor both intraparenchymal injection of NaCl solution and subsequent radiofrequency ablation (RFA) within tissues pretreated with NaCl, report the low- and high-field-strength MR appearance of NaCl-enhanced RFAs, and compare MR findings with pathologic findings. MATERIALS AND METHODS Ten ex vivo calf liver specimens were injected with saturated NaCl (seven were mixed with methylene blue during MR fluoroscopic monitoring) and reexamined with fast imaging with steady-state progression (FISP), true FISP, reversed FISP (PSIF), and fast spin-echo T2-weighted MR sequences. The NaCl-to-liver contrast-to-noise ratio (CNR) was calculated for various sequences, and CNRs were compared with the Student t test. Distribution on MR images was compared with the results of pathologic analysis. Forty additional in vivo monopolar RFAs were performed in paraspinal muscles of seven minipigs after animal care committee approval (10 standard control ablations, 30 were preceded by direct injection of saturated NaCl at various volumes [3-9 mL] and rates [1 or 6mL/min]). Postablation low-field-strength (n = 20) and high-field-strength (n = 20) MR examinations consisted of T2-weighted imaging, short inversion time inversion-recovery (STIR) imaging, and contrast material-enhanced T1-weighted imaging. Ablation shape, conspicuity, volume, and signal intensity were compared between the two groups and with the results of pathologic analysis. The difference in volumes with and without NaCl injection was evaluated by using two-way analysis of variance. RESULTS Mean CNR was highest on fast spin-echo T2-weighted images and was significantly higher for PSIF than for FISP (P < .0001) or true FISP (P = .003). NaCl distribution on MR images corresponded with the results of pathologic analysis in ex vivo livers. Interactive in vivo monitoring of NaCl injection and electrode placement was feasible. NaCl-enhanced ablations had irregular shapes, a higher CNR, and significantly larger volumes (F = 22.0; df = 1, 90; P < .00001). All ablations had intermediate or low signal intensity with high-signal-intensity rims on all images. Fluid signals overlaid NaCl-enhanced ablations on fast spin-echo T2-weighted and STIR images, particularly on high-field-strength MR images. CONCLUSION MR imaging can be used to reliably monitor the distribution of injected NaCl solution in tissues. Interventional MR imaging techniques can be used to guide and monitor RFAs within NaCl pretreated tissues, with good correlation with pathologic results.


Theranostics | 2013

Using C-Arm X-Ray Imaging to Guide Local Reporter Probe Delivery for Tracking Stem Cell Engraftment

Dorota Kedziorek; Meiyappan Solaiyappan; Piotr Walczak; Tina Ehtiati; Yingli Fu; Jeff W. M. Bulte; Steven M. Shea; Alexander Brost; Frank Wacker; Dara L. Kraitchman

Poor cell survival and difficulties with visualization of cell delivery are major problems with current cell transplantation methods. To protect cells from early destruction, microencapsulation methods have been developed. The addition of a contrast agent to the microcapsule also could enable tracking by MR, ultrasound, and X-ray imaging. However, determining the cell viability within the microcapsule still remains an issue. Reporter gene imaging provides a way to determine cell viability, but delivery of the reporter probe by systemic injection may be hindered in ischemic diseases. In the present study, mesenchymal stem cells (MSCs) were transfected with triple fusion reporter gene containing red fluorescent protein, truncated thymidine kinase (SPECT/PET reporter) and firefly luciferase (bioluminescence reporter). Transfected cells were microencapsulated in either unlabeled or perfluorooctylbromide (PFOB) impregnated alginate. The addition of PFOB provided radiopacity to enable visualization of the microcapsules by X-ray imaging. Before intramuscular transplantation in rabbit thigh muscle, the microcapsules were incubated with D-luciferin, and bioluminescence imaging (BLI) was performed immediately. Twenty-four and forty-eight hours post transplantation, c-arm CT was used to target the luciferin to the X-ray-visible microcapsules for BLI cell viability assessment, rather than systemic reporter probe injections. Not only was the bioluminescent signal emission from the PFOB-encapsulated MSCs confirmed as compared to non-encapsulated, naked MSCs, but over 90% of injection sites of PFOB-encapsulated MSCs were visible on c-arm CT. The latter aided in successful targeting of the reporter probe to injection sites using conventional X-ray imaging to determine cell viability at 1-2 days post transplantation. Blind luciferin injections to the approximate location of unlabeled microcapsules resulted in successful BLI signal detection in only 18% of injections. In conclusion, reporter gene probes can be more precisely targeted using c-arm CT for in vivo transplant viability assessment, thereby avoiding large and costly systemic injections of a reporter probe.


Proceedings of SPIE | 2010

Novel reconstruction and feature exploitation techniques for sensorless freehand 3D ultrasound

Hassan Rivaz; Hyun Jae Kang; Philipp J. Stolka; Richard Zellars; Frank Wacker; Gregory D. Hager; Emad M. Boctor

Out-of-plane motion in freehand 3D ultrasound can be estimated using the correlation of corresponding patches, leading to sensorless freehand 3D ultrasound systems. The correlation between two images is related to their distance by calibrating the ultrasound probe: the probe is moved with an accurate stage (or with a robot in this work) and images of a phantom are collected, such that the position of each image is known. Since parts of the calibration curve with higher derivative gives lower displacement estimation error, previous work limits displacement estimation to parts with maximum derivative. In this paper, we first propose a novel method for exploiting the entire calibration curve by using a maximum likelihood estimator (MLE). We then propose for the first time using constrains inside the image to enhance the accuracy of out-of-plane motion estimation. We specifically use continuity constraint of a needle to reduce the variance of the estimated out-of-plane motion. Simulation and real tissue experimental results are presented.


Proceedings of SPIE | 2010

Application of external tracking in ultrasound elasticity imaging

Pezhman Foroughi; Gregory D. Hager; Frank Wacker; Emad M. Boctor

Despite the success of ultrasound elasticity imaging (USEI) in medical applications such as diagnosis and screening of breast lesions and prostate cancer, USEI has not been adopted in routine clinical procedures. This is partly caused by the difficulty in acquiring reliable images and interpreting them, the lack of consistency over time, and the dependency of image quality to the expertise of the user. We previously demonstrated the potential of exploiting an external tracker to partially alleviate these issues and enhance the quality of USEI. The tracking data enabled fast and automatic selection of pairs of RF frames used in strain calculation. Here, we expand this method by including new features. The proposed method employs image content to compensate for the limited accuracy of the tracking device. It also combines multiple strain images to improve the quality of the final image. For this purpose, It normalizes the images and determines which images can be combined relying on the tracking information. We have acquired RF frames synchronized with tracking data from livers of pig containing an ablated region and a breast phantom using two different tracking devices; an optical tracker and a less accurate electromagnetic tracker. We present the promising results of the proposed method and investigate the sensitivity of frame selection technique without using the image content to inaccuracies in tracking information.

Collaboration


Dive into the Frank Wacker's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D.A. Kedziorek

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Yingli Fu

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Piotr Walczak

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeff W. M. Bulte

Johns Hopkins University School of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge