Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Frank Westermann is active.

Publication


Featured researches published by Frank Westermann.


Nature Medicine | 2001

Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks.

Javed Khan; Jun S. Wei; Markus Ringnér; Lao H. Saal; Marc Ladanyi; Frank Westermann; Frank Berthold; Manfred Schwab; Cristina R. Antonescu; Carsten Peterson; Paul S. Meltzer

The purpose of this study was to develop a method of classifying cancers to specific diagnostic categories based on their gene expression signatures using artificial neural networks (ANNs). We trained the ANNs using the small, round blue-cell tumors (SRBCTs) as a model. These cancers belong to four distinct diagnostic categories and often present diagnostic dilemmas in clinical practice. The ANNs correctly classified all samples and identified the genes most relevant to the classification. Expression of several of these genes has been reported in SRBCTs, but most have not been associated with these cancers. To test the ability of the trained ANN models to recognize SRBCTs, we analyzed additional blinded samples that were not previously used for the training procedure, and correctly classified them in all cases. This study demonstrates the potential applications of these methods for tumor diagnosis and the identification of candidate targets for therapy.


Genome Biology | 2009

A novel and universal method for microRNA RT-qPCR data normalization

Pieter Mestdagh; Pieter Van Vlierberghe; An-Sofie De Weer; Daniel Muth; Frank Westermann; Frank Speleman; Jo Vandesompele

Gene expression analysis of microRNA molecules is becoming increasingly important. In this study we assess the use of the mean expression value of all expressed microRNAs in a given sample as a normalization factor for microRNA real-time quantitative PCR data and compare its performance to the currently adopted approach. We demonstrate that the mean expression value outperforms the current normalization strategy in terms of better reduction of technical variation and more accurate appreciation of biological changes.


Journal of Clinical Oncology | 2006

Customized Oligonucleotide Microarray Gene Expression–Based Classification of Neuroblastoma Patients Outperforms Current Clinical Risk Stratification

André Oberthuer; Frank Berthold; Patrick Warnat; Barbara Hero; Yvonne Kahlert; Rüdiger Spitz; Karen Ernestus; Rainer König; Stefan A. Haas; Roland Eils; Manfred Schwab; Benedikt Brors; Frank Westermann; Matthias Fischer

PURPOSE To develop a gene expression-based classifier for neuroblastoma patients that reliably predicts courses of the disease. PATIENTS AND METHODS Two hundred fifty-one neuroblastoma specimens were analyzed using a customized oligonucleotide microarray comprising 10,163 probes for transcripts with differential expression in clinical subgroups of the disease. Subsequently, the prediction analysis for microarrays (PAM) was applied to a first set of patients with maximally divergent clinical courses (n = 77). The classification accuracy was estimated by a complete 10-times-repeated 10-fold cross validation, and a 144-gene predictor was constructed from this set. This classifiers predictive power was evaluated in an independent second set (n = 174) by comparing results of the gene expression-based classification with those of risk stratification systems of current trials from Germany, Japan, and the United States. RESULTS The first set of patients was accurately predicted by PAM (cross-validated accuracy, 99%). Within the second set, the PAM classifier significantly separated cohorts with distinct courses (3-year event-free survival [EFS] 0.86 +/- 0.03 [favorable; n = 115] v 0.52 +/- 0.07 [unfavorable; n = 59] and 3-year overall survival 0.99 +/- 0.01 v 0.84 +/- 0.05; both P < .0001) and separated risk groups of current neuroblastoma trials into subgroups with divergent outcome (NB2004: low-risk 3-year EFS 0.86 +/- 0.04 v 0.25 +/- 0.15, P < .0001; intermediate-risk 1.00 v 0.57 +/- 0.19, P = .018; high-risk 0.81 +/- 0.10 v 0.56 +/- 0.08, P = .06). In a multivariate Cox regression model, the PAM predictor classified patients of the second set more accurately than risk stratification of current trials from Germany, Japan, and the United States (P < .001; hazard ratio, 4.756 [95% CI, 2.544 to 8.893]). CONCLUSION Integration of gene expression-based class prediction of neuroblastoma patients may improve risk estimation of current neuroblastoma trials.


Lancet Oncology | 2003

Neuroblastoma: biology and molecular and chromosomal pathology

Manfred Schwab; Frank Westermann; Barbara Hero; Frank Berthold

Neuroblastoma is the most frequently occurring solid tumour in children, with an incidence of 1.3 cases per 100000 children aged 0-14 years. Despite many advances during the past three decades, neuroblastoma has remained an enigmatic challenge to clinical and basic scientists. 20 years ago, the MYCN gene was found to be amplified in neuroblastomas, and research since then has focused on the search for other genetic markers. It has emerged that neuroblastoma cells, like cells of many other tumour types, often suffer from extensive, non-random genetic damage at multiple genetic loci. Elucidation of the exact molecular make-up of neuroblastomas will enable researchers to analyse how much specific markers, alone or in combination, can help to stratify disease in prospective studies; at present, stratification is based on age, stage, MYCN, and Shimada pathology. Neuroblastoma may be one of the first examples of the use of genetic tumour markers as a tool for defining tumour behaviour and to aid clinical staging.


Clinical Cancer Research | 2009

Histone deacetylase 8 in neuroblastoma tumorigenesis

Ina Oehme; Hedwig E. Deubzer; Dennis Wegener; Diana Pickert; Jan Peter Linke; Barbara Hero; Annette Kopp-Schneider; Frank Westermann; Scott M. Ulrich; Andreas von Deimling; Matthias Fischer; Olaf Witt

Purpose: The effects of pan–histone deacetylase (HDAC) inhibitors on cancer cells have shown that HDACs are involved in fundamental tumor biological processes such as cell cycle control, differentiation, and apoptosis. However, because of the unselective nature of these compounds, little is known about the contribution of individual HDAC family members to tumorigenesis and progression. The purpose of this study was to evaluate the role of individual HDACs in neuroblastoma tumorigenesis. Experimental Design: We have investigated the mRNA expression of all HDAC1-11 family members in a large cohort of primary neuroblastoma samples covering the full spectrum of the disease. HDACs associated with disease stage and survival were subsequently functionally evaluated in cell culture models. Results: Only HDAC8 expression was significantly correlated with advanced disease and metastasis and down-regulated in stage 4S neuroblastoma associated with spontaneous regression. High HDAC8 expression was associated with poor prognostic markers and poor overall and event-free survival. The knockdown of HDAC8 resulted in the inhibition of proliferation, reduced clonogenic growth, cell cycle arrest, and differentiation in cultured neuroblastoma cells. The treatment of neuroblastoma cell lines as well as short-term-culture neuroblastoma cells with an HDAC8-selective small-molecule inhibitor inhibited cell proliferation and clone formation, induced differentiation, and thus reproduced the HDAC8 knockdown phenotype. Global histone 4 acetylation was not affected by HDAC8 knockdown or by selective inhibitor treatment. Conclusions: Our data point toward an important role of HDAC8 in neuroblastoma pathogenesis and identify this HDAC family member as a specific drug target for the differentiation therapy of neuroblastoma.


Nature Genetics | 2001

Heterozygous mutations in ANKH , the human ortholog of the mouse progressive ankylosis gene, result in craniometaphyseal dysplasia

Peter Nürnberg; Holger Thiele; David Chandler; Wolfgang Höhne; Michael L. Cunningham; Heide Ritter; Gundula Leschik; Karen Uhlmann; Claudia Mischung; Karen Harrop; Jack Goldblatt; Zvi Borochowitz; Dieter Kotzot; Frank Westermann; Stefan Mundlos; Hans Steffen Braun; Nigel G. Laing; Sigrid Tinschert

Heterozygous mutations in ANKH , the human ortholog of the mouse progressive ankylosis gene, result in craniometaphyseal dysplasia


Genome Biology | 2008

Distinct transcriptional MYCN/c-MYC activities are associated with spontaneous regression or malignant progression in neuroblastomas

Frank Westermann; Daniel Muth; Axel Benner; Tobias Bauer; Kai Oliver Henrich; André Oberthuer; Benedikt Brors; Tim Beissbarth; Jo Vandesompele; Filip Pattyn; Barbara Hero; Rainer König; Matthias Fischer; Manfred Schwab

BackgroundAmplified MYCN oncogene resulting in deregulated MYCN transcriptional activity is observed in 20% of neuroblastomas and identifies a highly aggressive subtype. In MYCN single-copy neuroblastomas, elevated MYCN mRNA and protein levels are paradoxically associated with a more favorable clinical phenotype, including disseminated tumors that subsequently regress spontaneously (stage 4s-non-amplified). In this study, we asked whether distinct transcriptional MYCN or c-MYC activities are associated with specific neuroblastoma phenotypes.ResultsWe defined a core set of direct MYCN/c-MYC target genes by applying gene expression profiling and chromatin immunoprecipitation (ChIP, ChIP-chip) in neuroblastoma cells that allow conditional regulation of MYCN and c-MYC. Their transcript levels were analyzed in 251 primary neuroblastomas. Compared to localized-non-amplified neuroblastomas, MYCN/c-MYC target gene expression gradually increases from stage 4s-non-amplified through stage 4-non-amplified to MYCN amplified tumors. This was associated with MYCN activation in stage 4s-non-amplified and predominantly c-MYC activation in stage 4-non-amplified tumors. A defined set of MYCN/c-MYC target genes was induced in stage 4-non-amplified but not in stage 4s-non-amplified neuroblastomas. In line with this, high expression of a subset of MYCN/c-MYC target genes identifies a patient subtype with poor overall survival independent of the established risk markers amplified MYCN, disease stage, and age at diagnosis.ConclusionsHigh MYCN/c-MYC target gene expression is a hallmark of malignant neuroblastoma progression, which is predominantly driven by c-MYC in stage 4-non-amplified tumors. In contrast, moderate MYCN function gain in stage 4s-non-amplified tumors induces only a restricted set of target genes that is still compatible with spontaneous regression.


Cancer Letters | 2002

Genetic parameters of neuroblastomas

Frank Westermann; Manfred Schwab

Neuroblastoma is a malignant childhood tumor of migrating neuroectodermal cells derived from the neural crest and destined for the adrenal medulla and the sympathetic nervous system. The biological behavior of neuroblastomas is extremely variable and in some respects unique. Neuroblastomas tend to regress spontaneously in a portion of infants or to differentiate into a benign ganglioneuroma in some older patients. Unfortunately, in the majority of patients neuroblastoma is metastatic at the time of diagnosis, and it usually undergoes rapid progression with a fatal outcome. The mechanisms leading to this diverse clinical behavior of neuroblastomas are largely unclear. From the analysis of tumors at the cytogenetic and molecular level non-random genetic changes have been identified, including ploidy changes, amplification of the oncogene MYCN, deletions of chromosome 1p, gains of chromosome arm 17q, and deletions of 11q as well as of other genomic regions that allow tumors to be classified into subsets with distinct biological features and clinical behavior. MYCN status is widely accepted for therapy stratification. Additional genetic parameters are currently under investigation to refine risk assessment, but so far the molecular monitoring tools for prediction of therapy response and disease outcome are still incomplete. This should lead to more risk-adapted therapies according to the clinical-genetic parameters by which individual tumors are characterized. This review aims at discussing the role of genomic changes in neuroblastomas of diverse biological and clinical types.


Nature | 2015

Telomerase activation by genomic rearrangements in high-risk neuroblastoma

Martin Peifer; Falk Hertwig; Frederik Roels; Daniel Dreidax; Moritz Gartlgruber; Roopika Menon; Andrea Krämer; Justin L. Roncaioli; Frederik Sand; Johannes M. Heuckmann; Fakhera Ikram; Rene Schmidt; Sandra Ackermann; Anne Engesser; Yvonne Kahlert; Wenzel Vogel; Janine Altmüller; Peter Nürnberg; Jean Thierry-Mieg; Danielle Thierry-Mieg; Aruljothi Mariappan; Stefanie Heynck; Erika Mariotti; Kai-Oliver Henrich; Christian Gloeckner; Graziella Bosco; Ivo Leuschner; Michal R. Schweiger; Larissa Savelyeva; Simon C. Watkins

Neuroblastoma is a malignant paediatric tumour of the sympathetic nervous system. Roughly half of these tumours regress spontaneously or are cured by limited therapy. By contrast, high-risk neuroblastomas have an unfavourable clinical course despite intensive multimodal treatment, and their molecular basis has remained largely elusive. Here we have performed whole-genome sequencing of 56 neuroblastomas (high-risk, n = 39; low-risk, n = 17) and discovered recurrent genomic rearrangements affecting a chromosomal region at 5p15.33 proximal of the telomerase reverse transcriptase gene (TERT). These rearrangements occurred only in high-risk neuroblastomas (12/39, 31%) in a mutually exclusive fashion with MYCN amplifications and ATRX mutations, which are known genetic events in this tumour type. In an extended case series (n = 217), TERT rearrangements defined a subgroup of high-risk tumours with particularly poor outcome. Despite a large structural diversity of these rearrangements, they all induced massive transcriptional upregulation of TERT. In the remaining high-risk tumours, TERT expression was also elevated in MYCN-amplified tumours, whereas alternative lengthening of telomeres was present in neuroblastomas without TERT or MYCN alterations, suggesting that telomere lengthening represents a central mechanism defining this subtype. The 5p15.33 rearrangements juxtapose the TERT coding sequence to strong enhancer elements, resulting in massive chromatin remodelling and DNA methylation of the affected region. Supporting a functional role of TERT, neuroblastoma cell lines bearing rearrangements or amplified MYCN exhibited both upregulated TERT expression and enzymatic telomerase activity. In summary, our findings show that remodelling of the genomic context abrogates transcriptional silencing of TERT in high-risk neuroblastoma and places telomerase activation in the centre of transformation in a large fraction of these tumours.


Journal of Clinical Oncology | 2011

FSTL5 Is a Marker of Poor Prognosis in Non-WNT/Non-SHH Medulloblastoma

Marc Remke; Thomas Hielscher; Andrey Korshunov; Paul A. Northcott; Sebastian Bender; Marcel Kool; Frank Westermann; Axel Benner; Huriye Cin; Marina Ryzhova; Dominik Sturm; Hendrik Witt; Daniel Haag; Grischa Toedt; Andrea Wittmann; Anna Schöttler; André O. von Bueren; Andreas von Deimling; Stefan Rutkowski; Wolfram Scheurlen; Andreas E. Kulozik; Michael D. Taylor; Peter Lichter; Stefan M. Pfister

PURPOSE Integrated genomics approaches have revealed at least four distinct biologic variants of medulloblastoma: WNT (wingless), SHH (sonic hedgehog), group C, and group D. Because of the remarkable clinical heterogeneity of group D tumors and the dismal prognosis of group C patients, it is vital to identify molecular biomarkers that will allow early and effective treatment stratification in these non-WNT/non-SHH tumors. PATIENTS AND METHODS We combined transcriptome and DNA copy-number analyses for 64 primary medulloblastomas. Bioinformatic tools were used to discover marker genes of molecular variants. Differentially expressed transcripts were evaluated for prognostic value in the screening cohort. The prognostic power of follistatin-like 5 (FSTL5) immunopositivity was tested for 235 nonoverlapping medulloblastoma samples on two independent tissue microarrays. RESULTS Comprehensive analyses of transcriptomic and genetic alterations delineate four distinct variants of medulloblastoma. Stable subgroup separation was achieved by using the 300 transcripts that varied the most. Distinct expression patterns of FSTL5 in each molecular subgroup were confirmed by quantitative real-time polymerase chain reaction. Immunopositivity of FSTL5 identified a large cohort of patients (84 of 235 patients; 36%) at high risk for relapse and death. Importantly, more than 50% of non-WNT/non-SHH tumors displayed FSTL5 negativity, delineating a large patient cohort with a good prognosis who would otherwise be considered intermediate or high-risk on the basis of current molecular subgrouping. CONCLUSION FSTL5 expression denoted a dismal prognosis both within and across medulloblastoma subgroups. The addition of FSTL5 immunohistochemistry to existing molecular stratification schemes constitutes a reliable and cost-effective tool for prognostication in future clinical trials of medulloblastoma.

Collaboration


Dive into the Frank Westermann's collaboration.

Top Co-Authors

Avatar

Matthias Fischer

Garvan Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Manfred Schwab

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Benedikt Brors

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge