Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Frank Wille is active.

Publication


Featured researches published by Frank Wille.


Packaging, Transport, Storage and Security of Radioactive Material | 2011

Finite element mesh design of a cylindrical cask under puncture drop test conditions

Uwe Zencker; Mike Weber; Frank Wille

Abstract Transport casks for radioactive materials have to withstand the 9 m drop test, 1 m puncture drop test and dynamic crush test with regard to the mechanical requirements according to the IAEA regulations. The safety assessment of the package can be carried out on the basis of experimental investigations with prototypes or models of appropriate scale, calculations, by reference to previous satisfactory safety demonstrations of a sufficiently similar nature or a combination of these methods. Computational methods are increasingly used for the assessment of mechanical test scenarios. However, it must be guaranteed that the calculation methods provide reliable results. Important quality assurance measures at the Federal Institute for Materials Research and Testing are given concerning the preparation, run and evaluation of a numerical analysis with reference to the appropriate guidelines. Hence, a successful application of the finite element (FE) method requires a suitable mesh. An analysis of the 1 m puncture drop test using successively refined FE meshes was performed to find an acceptable mesh size and to study the mesh convergence using explicit dynamic FE codes. The FE model of the cask structure and the puncture bar is described. At the beginning a coarse mesh was created. Then this mesh was refined in two steps. In each step the size of the elements was bisected. The deformation of the mesh and the stresses were evaluated dependent on the mesh size. Finally, the results were extrapolated to an infinite fine mesh or the continuous body, respectively. The uncertainty of the numerical solution due to the discretisation of the continuous problem is given. A safety factor is discussed to account for the uncertainty.


ASME 2014 Pressure Vessels and Piping Conference | 2014

NUMERICAL APPROACH FOR CONTAINMENT ASSESSMENT OF TRANSPORT PACKAGES UNDER REGULATORY THERMAL TEST CONDITIONS

Jens Sterthaus; Viktor Ballheimer; Claus Bletzer; Konrad Linnemann; Marko Nehrig; Frank Wille

The requirements of the IAEA safety standards for Type B(U) packages include the thermal test as part of test sequences that represents accident conditions of transport. In comparison to mechanical tests, e.g., 9 m drop onto an unyielding target with short impact durations in a range of approximately 10 ms to 30 ms, the extended period of 30 min is defined in regulations for exposure of a package to a fire environment. Obviously, the required containment capability of the package has to be ensured not only after completing the test sequence but also over the course of the fire test scenario.Especially, deformations in the sealing area induced by the non-uniform thermal dilation of the package can affect the capability of the containment system. Consequently, thermo-mechanical analyses are required for the assessment.In this paper some aspects of finite element analysis (FEA) of transport packages with bolted closure systems under thermal loading are discussed. A generic FE model of a cask is applied to investigate the stress histories in the bolts, lid, and cask body as well as the deformations in the sealing area and the compression conditions of the gasket. Based on the parameter variations carried out, some recommendations in regard to modeling technique and results interpretation for such kind of analyses are finally given.Copyright


Packaging, Transport, Storage and Security of Radioactive Material | 2011

From experiment to appropriate finite element model-safety assessment for ductile cast iron casks demonstrated by means of IAEA puncture drop test

Mike Weber; Frank Wille; Viktor Ballheimer; A Musolff

Abstract In the approval procedure of transport packages for radioactive materials, the competent authority mechanical and thermal safety assessment is carried out in Germany by BAM Federal Institute for Materials Research and Testing. The combination of experimental investigations and numerical calculations in conjunction with materials and components testing is the basis of the safety assessment concept of the BAM. Among other mechanical test scenarios, a 1 metre drop test onto a steel bar has to be considered for the application of the hypothetical accident conditions to Type B packages according to IAEA regulations. Within the approval procedure for the new German package design of the HLW cask CASTOR® HAW 28M, designed by GNS Gesellschaft für Nuklear-Service Germany, a puncture drop test was performed with a half-scale model of the cask at −40°C. For independent assessment and to control the safety analysis presented by the applicant, BAM developed a complex finite element (FE) model for a dynamical ABAQUS/ExplicitTM analysis. This paper describes in detail the use of the FE method for modelling the puncture drop test within an actual assessment strategy. At first, investigations of the behaviour of the steel bar were carried out. Different friction coefficients and the material law of the bar were analysed by using a ‘rigid-body’ approximation for the cask body. In the next step, a more detailed FE model with a more realistic material definition for the cask body was developed. The validation of calculated strains was carried out by comparison with the results of the strain gauges located at the relevant points of the cask model. The influence of the FE meshing is described. Finally, the validated FE half-scale model was expanded to full-scale dimension. Scaling effects were analysed. The model was used for safety assessment of the package to be approved.


Packaging, Transport, Storage and Security of Radioactive Material | 2010

Mechanical design assessment approaches of actual spent fuel and HLW transport package designs

Frank Wille; Bernhard Droste; Karsten Müller; Uwe Zencker

Abstract In recent years, BAM Federal Institute for Materials Research and Testing finalised the competent authority assessment of the mechanical and thermal package design in several German approval procedures of new spent fuel and high level waste package designs. The combination of computational methods and experimental investigations in conjunction with materials and cask components testing is the most common approach to mechanical safety assessment. The methodology in the field of safety analysis, including associated assessment criteria and procedures, has evolved rapidly over the last years. The design safety analysis must be based on a clear and comprehensive safety evaluation concept, including defined assessment criteria and constructional safety goals. In general, for new package designs, the implementation of experimental package drop tests in the approval process should be obligatory. Additionally, pre- and post-test calculations as well as components or material testing could be important. The extent to which drop tests are necessary depends on the individual package construction, the materials used and identified safety margins in the design.


Packaging, Transport, Storage and Security of Radioactive Material | 2010

Mechanical safety analysis for high burn-up spent fuel assemblies under accident transport conditions

Viktor Ballheimer; Frank Wille; Bernhard Droste

Abstract Transport packages for spent fuel have to meet the requirements concerning containment, shielding and criticality as specified in the International Atomic Energy Agency regulations for different transport conditions. Physical state of spent fuel and fuel rod cladding as well as geometric configuration of fuel assemblies are, among others, important inputs for the evaluation of correspondent package capabilities under these conditions. The kind, accuracy and completeness of such information depend upon purpose of the specific problem. In this paper, the mechanical behaviour of spent fuel assemblies under accident conditions of transport will be analysed with regard to assumptions to be used in the criticality safety analysis. In particular the potential rearrangement of the fissile content within the package cavity, including the amount of the fuel released from broken rods has to be properly considered in these assumptions. In view of the complexity of interactions between the fuel rods of each fuel assembly among themselves as well as between fuel assemblies, basket, and cask body or cask lid, the exact mechanical analysis of such phenomena under drop test conditions is nearly impossible. The application of sophisticated numerical models requires extensive experimental data for model verification, which are in general not available. The gaps in information concerning the material properties of cladding and pellets, especially for the high burn-up fuel, make the analysis more complicated additionally. In this context a simplified analytical methodology for conservative estimation of fuel rod failures and spent fuel release is described. This methodology is based on experiences of BAM acting as the responsible German authority within safety assessment of packages for transport of spent fuel.


ASME 2014 Pressure Vessels and Piping Conference | 2014

Methodological Aspects for Numerical Analysis of Lid Systems for SNF and HLW Transport Packages

Konrad Linnemann; Viktor Ballheimer; Jens Sterthaus; Frank Wille

The regulatory compliance of the containment system is of essential importance for the design assessment of transport packages for radioactive materials. The requirements of the IAEA transport regulations SSR-6 for accident conditions implies high load on the containment system of Type B(U) packages. The integrity of the containment system has to be ensured under the mechanical and thermal tests.The containment system of German transport packages for spent nuclear fuel (SNF) and high level waste (HLW) usually includes bolted lids with metal gaskets. BAM Federal Institute for Materials Research and Testing as the German competent authority for the mechanical and thermal design assessment of approved transport packages has developed the guideline BAM-GGR 012 for the analysis of bolted lid and trunnion systems. According to this guideline the finite element (FE) method is recommended for the calculations. FE analyses provide more accurate and detailed information about loading and deformation of such kind of structures. The results allow the strength assessment of the lid and bolts as well as the evaluation of relative displacements between the lid and the cask body in the area of the gasket groove.This paper discusses aspects concerning FE simulation of lid systems for SNF and HLW transport packages. The work is based on the experiences of BAM within safety assessment procedures. The issues considered are the assessment methods used in the BAM-GGR 012 for bolted lid systems along with the nominal stress concept which is applied for bolts according to that guideline. Additionally, modeling strategies, analysis techniques and the interpretation of the results are illustrated by the example of a generalized bolted lid systems under selected accident conditions of transport.Copyright


ASME 2012 Pressure Vessels and Piping Conference | 2012

Assessment of ductile cast iron fracture mechanics analysis within licensing of German transport packages

Steffen Komann; Yusuf Kiyak; Frank Wille; Uwe Zerbst; Mike Weber; Dietmar Klingbeil

In the design approval of transport packages for radioactive materials, the mechanical and thermal safety assessment is carried out in Germany by competent authority BAM. In recent years BAM was involved in several licensing procedures of new spent fuel and HLW package designs, where the cask body is of Ductile Cast Iron (DCI). According to IAEA regulations package designs have to fulfill requirements for specific conditions of transport. Type B(U) packages must withstand the defined accident conditions of transport. The temperature range from -40°C up to the operational temperature has to be considered. For the cask material DCI, it is necessary to determine safety against brittle fracture. The German guideline BAM-GGR 007 defines requirements for fracture mechanics of packagings made of DCI. Due to complex cask body structure and the dynamic loading a fracture mechanical assessment by analytical approaches is not always possible. Experience of recent design approval procedures show that the application of numerical calculations are applicable to determine the stresses and stress intensity factors in the cask body. At the first step a numerical analysis has to be done to identify the loading state at the whole cask body. Secondly an analysis of a detail of the cask body is made considering the displacement boundary conditions of the global model. An artificial flaw is considered in this detailed model to calculate the fracture mechanical loading state. The finite element mesh was strongly refined in the area of the flaw. The size of the artificial flaw is based on the ultrasonic inspection acceptance criteria applied for cask body manufacture.. The applicant (GNS) developed additional analysis tools for calculation of stress intensity factor and/or J-Integral. The assessment approach by BAM led to the decision to develop own tools to the possibility for independent proof of the results. The paper describes the authority assessment approach for DCI fracture mechanics analysis. The validation procedure incl. the development of own tools is explained. BAM developed a postprocessor to determine the fracture mechanical loads. A horizontal 1 m puncture bar drop test is used to give a detailed description of the assessment procedure.


Packaging, Transport, Storage and Security of Radioactive Material | 2007

Suggestions for correct performance of IAEA 1 m puncture bar drop test with reduced scale packages considering similarity theory aspects

Frank Wille; Viktor Ballheimer; Bernhard Droste

Abstract In the present paper, the IAEA regulatory 1 m puncture bar drop test is considered from the viewpoint of using reduced scale model packages. The similarity theory will be represented with regard to the practical performance of the puncture test. To reach an energy input into the containment boundary of a reduced scale model that is equivalent to a full scale package, the drop height has to be >1 m. A general approach for the calculation of the correction of drop height was derived depending on the scale factor. Complementary numerical calculations showed that the influence of a drop height adaptation becomes more important with larger scale factors. Furthermore it is shown that, the adaptation of drop height must be considered not only for drop tests with a deep penetration of the puncture bar (due to a thick deformable outside structure), but also for puncture bar drop tests with a direct impact on the containment boundary especially if scale models with larger scale factors are used.


Packaging, Transport, Storage and Security of Radioactive Material | 2012

Methodological aspects for finite element modelling of lid systems for Type B(U) transport packages

K Linnemann; Viktor Ballheimer; Jens Sterthaus; Frank Wille

Abstract The regulatory compliance of the containment system is of essential importance for the assessment process of Type B(U) transport packages. The requirements of the International Atomic Energy Agency safety standards for transport conditions imply high loading on the containment system. The integrity of the containment system has to be ensured in mechanical and thermal tests. The containment system of German spent nuclear fuel and high level waste transport packages usually includes bolted lids with metal gaskets. The finite element (FE) method is recommended for the analysis of lid systems according to the guideline BAM-GGR 012 for the assessment of bolted lid and trunnion systems. The FE analyses provide more accurate and detailed information about loading and deformation of such kind of structures. The results allow the strength assessment of the lid and bolts as well as the evaluation of relative displacements between the lid and the cask body in the area of the gasket groove. This paper discusses aspects concerning FE simulation of lid systems for type B(U) packages for the transport of spent nuclear fuel and high level waste. The work is based on the experiences of the BAM Federal Institute for Materials Research and Testing as the German competent authority for the mechanical design assessment of such kind of packages. The issues considered include modelling strategies, analysis techniques and interpretation of results. A particular focus of this paper is on the evaluation of the results with regard to FE accuracy, influence of the FE contact formulation and FE modelling techniques to take the metallic gasket into account.


Packaging, Transport, Storage and Security of Radioactive Material | 2012

Safety assessment aspects of type B(U) packages containing wet intermediate level waste

M Nehrig; C Bletzer; Frank Wille

Abstract In Germany, the mechanical and thermal safety assessment of approved packages for the transport of RAM is carried out by BAM as the competent authority according to the International Atomic Energy Agency regulations. BAM was involved in several approval procedures with ductile cast iron containers containing wet intermediate level waste. These contents, which are not dried, only drained, consist of saturated ion exchange resin and a small amount of free water. Compared to the safety assessment of packages with dry content, attention must be paid to some more specific points. The physical and chemical compatibility of the content itself and of the content with materials of the package must be shown. From the mechanical resistance point of view, the package has to withstand the forces resulting from the freezing liquid. The most interesting point, however, is the pressure build-up inside the package due to vapourisation. This could be caused by radiolysis of the liquid and must be taken into account for the storage period. The paper deals primarily with the pressure build-up inside the package caused by the regulatory thermal test (30 min at 800°C) as part of the cumulative test scenario under accident conditions of transport. To determine the pressure, the temperature distribution in the content must be calculated for the whole period from the beginning of the thermal test until cooling down. In this case, calculating the temperature distribution requires, besides the consideration of conduction and heat radiation, consideration of evaporation and condensation including the associated processes of transport.

Collaboration


Dive into the Frank Wille's collaboration.

Top Co-Authors

Avatar

Bernhard Droste

Bundesanstalt für Materialforschung und -prüfung

View shared research outputs
Top Co-Authors

Avatar

Viktor Ballheimer

Bundesanstalt für Materialforschung und -prüfung

View shared research outputs
Top Co-Authors

Avatar

Steffen Komann

Bundesanstalt für Materialforschung und -prüfung

View shared research outputs
Top Co-Authors

Avatar

Martin Neumann

Bundesanstalt für Materialforschung und -prüfung

View shared research outputs
Top Co-Authors

Avatar

Marko Nehrig

Bundesanstalt für Materialforschung und -prüfung

View shared research outputs
Top Co-Authors

Avatar

Jens Sterthaus

Bundesanstalt für Materialforschung und -prüfung

View shared research outputs
Top Co-Authors

Avatar

Annette Rolle

Bundesanstalt für Materialforschung und -prüfung

View shared research outputs
Top Co-Authors

Avatar

Claus Bletzer

Bundesanstalt für Materialforschung und -prüfung

View shared research outputs
Top Co-Authors

Avatar

Sven Schubert

Bundesanstalt für Materialforschung und -prüfung

View shared research outputs
Top Co-Authors

Avatar

Christian Kuschke

Bundesanstalt für Materialforschung und -prüfung

View shared research outputs
Researchain Logo
Decentralizing Knowledge