Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Frankie Chi Fat Ko is active.

Publication


Featured researches published by Frankie Chi Fat Ko.


Cancer Research | 2006

Interaction of Deleted in Liver Cancer 1 with Tensin2 in Caveolae and Implications in Tumor Suppression

Judy Wai Ping Yam; Frankie Chi Fat Ko; Chung-Yiu Chan; Dong-Yan Jin; Irene Oi-Lin Ng

Deleted in liver cancer 1 (DLC1) is a recently identified tumor suppressor gene frequently underexpressed in hepatocellular carcinoma (HCC). DLC1 encodes a Rho GTPase-activating protein domain that exhibits growth-suppressive activity in HCC cell lines. Our recent finding has revealed that inhibition of Rho-mediated actin stress fiber formation by DLC1 is associated with its growth inhibitory activity. In the present study, we identified tensin2 as the novel binding partner of DLC1. Tensin2 belongs to a new family of focal adhesion proteins that play key roles in cytoskeleton organization and signal transduction. Dysregulation of tensin proteins has previously been implicated in human cancers. Tensin2 is highly expressed in human liver. Introduction of tensin2 into HCC cell lines with low expression of tensin2 caused significant growth inhibition and induction of apoptosis. Tensin2 directly interacted with DLC1 in vitro and in vivo. Both proteins localized to punctate structures in the cytoplasm. Sequence analysis of DLC1 and tensin2 identified caveolin-1 binding motif in both proteins. In vivo immunoprecipitation study confirmed that both proteins indeed interacted with endogenous caveolin-1, which is the major structural component of caveolae. Our findings presented here suggest a new model for the action of DLC1 in hepatocytes, whereby DLC1-tensin2 complex interacts with Rho GTPases in caveolae to effect cytoskeletal reorganization.


PLOS ONE | 2008

Deleted in liver cancer 1 (DLC1) negatively regulates Rho/ROCK/MLC pathway in hepatocellular carcinoma.

Carmen Chak-Lui Wong; Chun-Ming Wong; Frankie Chi Fat Ko; Lo-Kong Chan; Yick-Pang Ching; Judy Wai Ping Yam; Irene Oi-Lin Ng

Aims Deleted in liver cancer 1 (DLC1), a member of RhoGTPase activating protein (GAP) family, is known to have suppressive activities in tumorigenicity and cancer metastasis. However, the underlying molecular mechanisms of how DLC1 suppresses cell motility have not been fully elucidated. Rho-kinase (ROCK) is an immediate down-stream effector of RhoA in mediating cellular cytoskeletal events and cell motility. In the present study, we aimed to investigate the effects of DLC1 on Rho/ROCK signaling pathway in hepatocellular carcinoma (HCC). Methodology/Principal Findings We demonstrated that DLC1 negatively regulated ROCK-dependent actomyosin contractility. From immumofluorescence study, we found that ectopic expression of DLC1 abrogated Rho/ROCK-mediated cytoskeletal reorganization including formation of stress fibers and focal adhesions. It also downregulated cortical phosphorylation of myosin light chain 2 (MLC2). These inhibitory events by DLC1 were RhoGAP-dependent, as RhoGAP-deficient mutant of DLC1 (DLC1 K714E) abolished these inhibitory events. In addition, from western study, DLC1 inhibited ROCK-related myosin light chain phosphatase targeting unit 1 (MYPT1) phosphorylation at Threonine 853. By examining cell morphology under microscope, we found that ectopic expression of dominant-active ROCK released cells from DLC1-induced cytoskeletal collapse and cell shrinkage. Conclusion Our data suggest that DLC1 negatively regulates Rho/ROCK/MLC2. This implicates a ROCK-mediated pathway of DLC1 in suppressing metastasis of HCC cells and enriches our understanding in the molecular mechanisms involved in the progression of hepatocellular carcinoma.


The Journal of Pathology | 2012

Caveolin-1 overexpression is associated with hepatocellular carcinoma tumourigenesis and metastasis†

Edith Yuk Ting Tse; Frankie Chi Fat Ko; Edmund Kwok-Kwan Tung; Lo Kong Chan; Terence Kin-Wah Lee; Elly Sau-Wai Ngan; Kwan Man; Alice Sze Tsai Wong; Irene Oi-Lin Ng; Judy Wai Ping Yam

Caveolin‐1 (Cav1) has been implicated in diverse human cancers, yet its role in hepatocellular carcinoma (HCC) tumourigenesis and metastasis remains elusive. In the current study, we aim to provide a comprehensive understanding regarding the functional role of Cav1 in HCC tumourigenesis and metastasis. Cav1 expression was examined in a panel of human HCC cell lines using western blotting analysis and quantitative RT‐PCR and human tissues by immunohistochemistry. Cav1 was not detected in normal liver cell line and all non‐tumourous liver tissues but exclusively expressed in HCC cell lines and tissues. Dramatic expression of Cav1 was found in metastatic HCC cell lines and tumours, indicating a progressive increase of Cav1 expression along disease progression. Cav1 overexpression was significantly correlated with venous invasion (p = 0.036). To investigate the functions of Cav1 in HCC, Cav1 overexpressing and knockdown stable clones were established in HCC cells and their tumourigenicity and metastatic potential were examined. Overexpression of Cav1 promoted HCC cell growth, motility, and invasiveness, as well as tumourigenicity in vivo. Conversely, knockdown of Cav1 in metastatic HCC cells inhibited the motility and invasiveness and markedly suppressed the tumour growth and metastatic potential in vivo. Collectively, our findings have shown the exclusive expression of Cav1 in HCC cell lines and clinical samples and revealed an up‐regulation of Cav1 along HCC progression. The definitive role of Cav1 in promoting HCC tumourigenesis was demonstrated, and we have shown for the first time in a mouse model that Cav1 promotes HCC metastasis. Copyright


PLOS ONE | 2009

Deleted in Liver Cancer 1 (DLC1) Utilizes a Novel Binding Site for Tensin2 PTB Domain Interaction and Is Required for Tumor-Suppressive Function

Lo-Kong Chan; Frankie Chi Fat Ko; Irene Oi-Lin Ng; Judy Wai Ping Yam

Background Deleted in liver cancer 1 (DLC1) is a Rho GTPase-activating protein (RhoGAP) frequently deleted and underexpressed in hepatocellular carcinoma (HCC) as well as in other cancers. Recent independent studies have shown interaction of DLC1 with members of the tensin focal adhesion protein family in a Src Homology 2 (SH2) domain-dependent mechanism. DLC1 and tensins interact and co-localize to punctate structures at focal adhesions. However, the mechanisms underlying the interaction between DLC1 and various tensins remain controversial. Methodology/Principal Findings We used a co-immunoprecipitation assay to identify a previously undocumented binding site at 375–385 of DLC1 that predominantly interacted with the phosphotyrosine binding (PTB) domain of tensin2. DLC1-tensin2 interaction is completely abolished in a DLC1 mutant lacking this novel PTB binding site (DLC1ΔPTB). However, as demonstrated by immunofluorescence and co-immunoprecipitation, neither the focal adhesion localization nor the interaction with tensin1 and C-terminal tensin-like (cten) were affected. Interestingly, the functional significance of this novel site was exhibited by the partial reduction of the RhoGAP activity, which, in turn, attenuated the growth-suppressive activity of DLC1 upon its removal from DLC1. Conclusions/Significance This study has provided new evidence that DLC1 also interacts with tensin2 in a PTB domain-dependent manner. In addition to properly localizing focal adhesions and preserving RhoGAP activity, DLC1 interaction with tensin2 through this novel focal adhesion binding site contributes to the growth-suppressive activity of DLC1.


PLOS ONE | 2011

Transcriptional Repressive H3K9 and H3K27 Methylations Contribute to DNMT1-Mediated DNA Methylation Recovery

Chun-Ming Wong; Carmen Chak-Lui Wong; Yeung-Lam Ng; Sandy Leung-Kuen Au; Frankie Chi Fat Ko; Irene Oi-Lin Ng

DNA methylation and histone modifications are two major epigenetic events regulating gene expression and chromatin structure, and their alterations are linked to human carcinogenesis. DNA methylation plays an important role in tumor suppressor gene inactivation, and can be revised by DNA methylation inhibitors. The reversible nature of DNA methylation forms the basis of epigenetic cancer therapy. However, it has been reported that DNA re-methylation and gene re-silencing could occur after removal of demethylation treatment and this may significantly hamper the therapeutic value of DNA methylation inhibitors. In this study we have provided detailed evidence demonstrating that mammalian cells possess a bona fide DNA methylation recovery system. We have also shown that DNA methylation recovery was mediated by the major human DNA methyltransferase, DNMT1. In addition, we found that H3K9-tri-methylation and H3K27-tri-methylation were closely associated with this DNA methylation recovery. These persistent transcriptional repressive histone modifications may have a crucial role in regulating DNMT1-mediated DNA methylation recovery. Our findings may have important implications towards a better understanding of epigenetic regulation and future development of epigenetic therapeutic intervention.


PLOS ONE | 2011

Integrin-linked kinase overexpression and its oncogenic role in promoting tumorigenicity of hepatocellular carcinoma

Jenny Chan; Frankie Chi Fat Ko; Yin-Shan Yeung; Irene Oi-Lin Ng; Judy Wai Ping Yam

Background Integrin-linked kinase (ILK) was first discovered as an integrin β1-subunit binding protein. It localizes at the focal adhesions and is involved in cytoskeleton remodeling. ILK overexpression and its dysregulated signaling cascades have been reported in many human cancers. Aberrant expression of ILK influenced a wide range of signaling pathways and cellular functions. Although ILK has been well characterized in many malignancies, its role in hepatocellular carcinoma (HCC) is still largely unknown. Methodology/Principal Findings Quantitative PCR analysis was used to examine ILK mRNA expression in HCC clinical samples. It was shown that ILK was overexpressed in 36.9% (21/57) of HCC tissues when compared to the corresponding non-tumorous livers. The overall ILK expression level was significantly higher in tumorous tissues (P = 0.004), with a significant stepwise increase in expression level along tumor progression from tumor stage I to IV (P = 0.045). ILK knockdown stable clones were established in two HCC cell lines, BEL7402 and HLE, and were subjected to different functional assays. Knockdown of ILK significantly suppressed HCC cell growth, motility and invasion in vitro and inhibited tumorigenicity in vivo. Western blot analysis revealed a reduced phosphorylated-Akt (pAkt) at Serine-473 expression in ILK knockdown stable clones when compared to control clones. Conclusion/Significance This study provides evidence about the clinical relevance of ILK in hepatocarcinogenesis. ILK was found to be progressively elevated along HCC progression. Here our findings also provide the first validation about the oncogenic capacity of ILK in vivo by suppressing its expression in HCC cells. The oncogenic role of ILK is implicated to be mediated by Akt pathway.


Hepatology | 2006

Tensin2 variant 3 is associated with aggressive tumor behavior in human hepatocellular carcinoma

Judy Wai Ping Yam; Frankie Chi Fat Ko; Chung-Yiu Chan; Tai-On Yau; Edmund Kwok-Kwan Tung; Thomas Leung; Dong-Yan Jin; Irene Oi-Lin Ng

Tensins are a new family of proteins that act as an important link among extracellular matrix, actin cytoskeleton, and signal transduction and have been implicated in human cancers. Tensin2 was initially identified in a search for new tensin family members that share extensive sequence homology with tensin1. Tensin2 was highly expressed in liver tissues. A recent study reported that one of the splicing variants of tensin2, variant 3, promotes cell migration. In the present study, we aimed to elucidate the role of variant 3 in hepatocarcinogenesis by assessing the expression of variant 3 mRNA in hepatocellular carcinoma (HCC) tissue and ectopically expressing variant 3 in HCC cell lines. Analysis of variant 3 expression in human HCC tissue revealed it was overexpressed in 46% (23/50) of tumor tissues as compared with the corresponding nontumorous livers. High expression of variant 3 was significantly associated with venous invasion (P = .037), tumor microsatellite formation (P = .022), and tumor nonencapsulation (P = .049). Our ectopic expression study showed that variant 3 significantly promoted the cell growth and motility of HCC cells. The clonal transfectants of variant 3 were more closely packed and resulted in a higher saturation density than in the control vector transfectants. Variant 3 expression also enhanced the proliferation rate in culture and in vivo tumorigenicity in nude mice. In conclusion, we reveal a novel role for variant 3 in the progression of HCC and suggest the feasibility of elevated variant 3 expression as a tumor progression marker for HCC. (HEPATOLOGY 2006;44:881–90.)


Gastroenterology | 2010

Akt Phosphorylation of Deleted in Liver Cancer 1 Abrogates Its Suppression of Liver Cancer Tumorigenesis and Metastasis

Frankie Chi Fat Ko; Lo Kong Chan; Edmund Kwok-Kwan Tung; Scott W. Lowe; Irene Oi-Lin Ng; Judy Wai Ping Yam

BACKGROUND & AIMS Deleted in liver cancer 1 (DLC1), which encodes a Rho GTPase activating protein, is a bona fide tumor suppressor in hepatocellular carcinoma. Underexpression of DLC1 in cancer has been attributed to genomic deletion and epigenetic silencing. However, the regulatory mechanism of the tumor suppressive activity of DLC1 remains elusive. In this study, we elucidated a novel post-translational modification by which the activity of DLC1 is functionally regulated. METHODS Molecular and biochemical approaches were employed to study Akt phosphorylation of DLC1. In vitro and in vivo functional assays were performed to elucidate the functional significance of Akt phosphorylation of DLC1. RESULTS Phosphorylation of ectopically expressed and endogenous DLC1 was enhanced upon insulin induction or with Akt expression in liver cancer cell lines. Conversely, addition of a phosphatidylinositol 3-kinase/Akt pathway inhibitor or silencing of Akt attenuated the phosphorylation level of DLC1. Site-directed mutagenesis was employed to replace the serine residue of the consensus Akt substrate motifs of DLC1 with alanine. S567 of DLC1 was identified as the only target of Akt phosphorylation. S567 is well conserved in all DLC family members. DLC2 was phosphorylated by Akt at the corresponding residue. Functional assays demonstrated that the S567D phosphomimetic DLC1 mutant lost its inhibitory activities in tumorigenesis and metastasis of oncogenically transformed hepatoblasts in a mouse model. CONCLUSIONS This study has revealed a novel post-translational modification that functionally deregulates the biologic activities of DLC1. Phosphorylation of DLC1 and DLC2 by Akt at the conserved residue points to a common regulatory mechanism of the DLC tumor suppressor family.


Liver International | 2010

Deleted in liver cancer 1 isoforms are distinctly expressed in human tissues, functionally different and under differential transcriptional regulation in hepatocellular carcinoma

Frankie Chi Fat Ko; Yin-Shan Yeung; Chun-Ming Wong; Lo-Kong Chan; Ronnie Tung-Ping Poon; Irene Oi-Lin Ng; Judy Wai Ping Yam

Background: Deleted in liver cancer (DLC) is a family of tumour suppressors that plays a critical role in hepatocellular carcinoma (HCC).


Nature Communications | 2013

PKA-induced dimerization of the RhoGAP DLC1 promotes its inhibition of tumorigenesis and metastasis

Frankie Chi Fat Ko; Lo-Kong Chan; Karen Man-Fong Sze; Yin-Shan Yeung; Edith Yuk Ting Tse; Ping Lu; Ming-Hua Yu; Irene Oi-Lin Ng; Judy Wai Ping Yam

Deleted in Liver Cancer 1 (DLC1) is a tumour suppressor that encodes a RhoGTPase-activating protein (RhoGAP) and is frequently inactivated in many human cancers. The RhoGAP activity of DLC1 against Rho signalling is well documented and is strongly associated with the tumour suppressor functions of DLC1. However, the mechanism by which the RhoGAP activity of DLC1 is regulated remains obscure. Here, we report that phosphorylation of DLC1 at Ser549 by cyclic AMP-dependent protein kinase A contributes to enhanced RhoGAP activity and promotes the activation of DLC1, which suppresses hepatoma cell growth, motility and metastasis in both in vitro and in vivo models. Intriguingly, we found that Ser549 phosphorylation induces the dimerization of DLC1 and that inducible dimerization of DLC1 can rescue the tumour suppressive and RhoGAP activities of DLC1 containing a Ser549 deletion. Our study establishes a novel regulatory mechanism for DLC1 RhoGAP activity via dimerization induced by protein kinase A signalling.

Collaboration


Dive into the Frankie Chi Fat Ko's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lo-Kong Chan

University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lo Kong Chan

University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dong-Yan Jin

University of Hong Kong

View shared research outputs
Researchain Logo
Decentralizing Knowledge