Franklin C. Harwood
St. Jude Children's Research Hospital
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Franklin C. Harwood.
Cancer Research | 2004
Peter J. Houghton; Glen S. Germain; Franklin C. Harwood; John D. Schuetz; Clinton F. Stewart; Elisabeth Buchdunger; Peter Traxler
Imatinib mesylate (Gleevec, STI571) is a kinase inhibitor selective for Bcr-Abl, activated c-Kit kinases, and platelet-derived growth factor receptor tyrosine kinase. Imatinib mesylate, similar to many other tyrosine kinase inhibitors (TKIs), such as members of the 4-anilinoquinazoline class, competes for ATP binding. Previously, 4-anilinoquinazoline TKIs have been shown to inhibit the function of the breast cancer resistance-associated drug transporter (ABCG2), reversing resistance to camptothecin derivatives topotecan and SN-38. However, the potential to inhibit ABCG2 for the 2-phenylamino-pyrimidine class of TKIs, exemplified by imatinib mesylate, has not been examined. Here, we show that imatinib mesylate potently reverses ABCG2-mediated resistance to topotecan and SN-38 and significantly increases accumulation of topotecan only in cells expressing functional ABCG2. However, overexpression of ABCG2 does not confer resistance to imatinib mesylate. Furthermore, accumulation and efflux of [14C]imatinib mesylate are unaltered between ABCG2-expressing and non-ABCG2-expressing cells or by ATP depletion. These results suggest that imatinib mesylate inhibits the function of ABCG2 but is not a substrate for this transporter.
Molecular Cell | 2003
Shile Huang; Lili Shu; Michael B. Dilling; John Easton; Franklin C. Harwood; Hidenori Ichijo; Peter J. Houghton
Under serum-free conditions, rapamycin, an inhibitor of mammalian target of rapamycin (mTOR), induces apoptosis of cells lacking functional p53. Cells expressing wild-type p53 or p21(Cip1)arrest in G1 and remain viable. In cells lacking functional p53, rapamycin or amino acid deprivation induces rapid and sustained activation of apoptosis signal-regulating kinase 1 (ASK1), c-Jun N-terminal kinase, and elevation of phosphorylated c-Jun that results in apoptosis. This stress response depends on expression of eukaryotic initiation factor 4E binding protein 1 and is suppressed by p21(Cip1) independent of cell cycle arrest. Rapamycin induces p21(Cip1) binding to ASK1, suppressing kinase activity and attenuating cellular stress. These results suggest that inhibition of mTOR triggers a potentially lethal response that is prevented only in cells expressing p21(Cip1).
Cancer Research | 2004
Clinton F. Stewart; Markos Leggas; John D. Schuetz; John C. Panetta; Pamela J. Cheshire; Jennifer K. Peterson; Najat C. Daw; Jesse J. Jenkins; Richard J. Gilbertson; Glen S. Germain; Franklin C. Harwood; Peter J. Houghton
As a single agent the ERBB1 inhibitor, gefitinib (Iressa; ZD1839) showed minimal activity against a panel of 10 pediatric tumor xenografts that do not express the ERBB1 receptor. However, combined with irinotecan (CPT-11), significantly greater than additive activity was observed in four of eight models (P < 0.05), and the combination showed enhanced activity against three additional tumor lines. Breast cancer resistance protein (ABCG2), a transporter that confers resistance to SN-38 (the active metabolite of irinotecan), was readily detected in six of nine xenograft models examined by immunohistochemistry. In vitro gefitinib potently reversed resistance to SN-38 only in a cell line that overexpressed functional ABCG2. However, overexpression of ABCG2 did not decrease accumulation nor increase the rate of efflux of [14C]gefitinib. On the basis of these results and the distribution of Abcg2 in mouse tissues, we assessed the ability of gefitinib to modulate irinotecan pharmacokinetics. Oral gefitinib coadministration resulted in no change in clearance of intravenously administered irinotecan. However, gefitinib treatment dramatically increased the oral bioavailability of irinotecan after simultaneous oral administration. It is concluded that gefitinib may modulate SN-38 activity at the cellular level to reverse tumor resistance mediated by ABCG2 through inhibiting drug efflux and may be used potentially in humans to modulate the oral bioavailability of a poorly absorbed camptothecin such as irinotecan.
Molecular Cancer Therapeutics | 2007
Raushan T. Kurmasheva; Franklin C. Harwood; Peter J. Houghton
Levels of vascular endothelial growth factor (VEGF) are regulated, in part, through activation of the phosphatidylinositol 3′-kinase/Akt pathway. Using pharmacologic inhibitors, we have examined the relative contributions of Akt and mammalian target of rapamycin (mTOR) signaling to VEGF production in neuroblastoma and rhabdomyosarcoma cells growing under normoxic (21% O2) or hypoxic (1% O2) conditions. Exogenous VEGF stimulated both Akt and extracellular signal–regulated kinase 1/2 phosphorylation in six of seven rhabdomyosarcoma cell lines but in only one of seven neuroblastoma cells, suggesting autocrine stimulation predominantly in rhabdomyosarcoma cell lines. In general, under normoxic conditions, neuroblastoma cells produced more VEGF (120–1,180 pg/106 cells/24 h) compared with rhabdomyosarcoma lines (0–200 pg/106 cells/24 h). Rapamycin, a selective inhibitor of mTOR, reduced VEGF production in rhabdomyosarcoma cells under normoxic conditions and partially suppressed hypoxia-driven increases in VEGF. However, it poorly inhibited VEGF production under either condition in the majority of neuroblastoma cell lines despite inhibition of mTOR signaling. Rapamycin failed to modulate levels of hypoxia-inducible factor 1α (HIF-1α) under normoxic conditions and modestly reduced hypoxia-driven increases in HIF-1α only in rhabdomyosarcoma cells. In contrast to rapamycin, inhibition of Akt by A-443654 completely blocked signaling to glycogen synthase kinase 3β and had more dramatic effects on VEGF production. Notably, A-443654 significantly inhibited VEGF production in rapamycin-refractory neuroblastoma cell lines. Importantly, whereas combining A-443654 with rapamycin had variable effect on cell proliferation, the combination essentially blocked hypoxia-driven increases in VEGF in all cell lines examined, suggesting that dual blockade at different levels in the phosphatidylinositol 3′-kinase–initiated signaling pathway may be a reasonable strategy for preventing VEGF production in cancer cells derived from pediatric solid tumors. However, this will require formal testing in vivo using animal models of childhood cancer. [Mol Cancer Ther 2007;6(5):1620–8]
Journal of Biological Chemistry | 2008
Franklin C. Harwood; Lili Shu; Peter J. Houghton
The mTORC1 complex (mammalian target of rapamycin (mTOR)-raptor) is modulated by mitogen-activated protein (p44/42 MAP) kinases (p44/42) through phosphorylation and inactivation of the tuberous sclerosis complex. However, a role for mTORC1 signaling in modulating activation of p44/42 has not been reported. We show that in two cancer cell lines regulation of the p44/42 MAPKs is mTORC1-dependent. In Rh1 cells rapamycin inhibited insulin-like growth factor-I (IGF-I)-stimulated phosphorylation of Thr202 but not Tyr204 and suppressed activation of p44/42 kinase activity. Down-regulation of raptor, which inhibits mTORC1 signaling, had a similar effect to rapamycin in blocking IGF-I-stimulated Tyr204 phosphorylation. Rapamycin did not block maximal phosphorylation of Tyr204 but retarded the rate of dephosphorylation of Tyr204 following IGF-I stimulation. IGF-I stimulation of MEK1 phosphorylation (Ser217/221) was not inhibited by rapamycin. Higher concentrations of rapamycin (≥100 ng/ml) were required to inhibit epidermal growth factor (EGF)-induced phosphorylation of p44/42 (Thr202). Rapamycin-induced inhibition of p44/42 (Thr202) phosphorylation by IGF-I was reversed by low concentrations of okadaic acid, suggesting involvement of protein phosphatase 2A (PP2A). Both IGF-I and EGF caused dissociation of PP2A catalytic subunit (PP2Ac) from p42. Whereas low concentrations of rapamycin (1 ng/ml) inhibited dissociation of PP2Ac after IGF-I stimulation, it required higher concentrations (≥100 ng/ml) to block EGF-induced dissociation, consistent with the ability for rapamycin to attenuate growth factor-induced activation of p44/42. The effect of rapamycin on IGF-I or insulin activation of p44/42 was recapitulated by amino acid deprivation. Rapamycin effects altering the kinetics of p44/42 phosphorylation were completely abrogated in Rh1mTORrr cells that express a rapamycin-resistant mTOR, whereas the effects of amino acid deprivation were similar in Rh1 and Rh1mTORrr cells. These results indicate complex regulation of p44/42 by phosphatases downstream of mTORC1. This suggests a model in which mTORC1 modulates the phosphorylation of Thr202 on p44/42 MAPKs through direct or indirect regulation of PP2Ac.
Science Advances | 2018
Franklin C. Harwood; Ramon I. Klein Geltink; Brendan P. O’Hara; Monica Cardone; Laura J. Janke; David Finkelstein; Igor Entin; Leena Paul; Peter J. Houghton; Gerard Grosveld
A novel mTOR complex assembled by the ETS transcription factor ETV7 contributes to rapamycin resistance in cancer. The mechanistic target of rapamycin (mTOR) serine/threonine kinase, a critical regulator of cell proliferation, is frequently deregulated in human cancer. Although rapamycin inhibits the two canonical mTOR complexes, mTORC1 and mTORC2, it often shows minimal benefit as an anticancer drug. This is caused by rapamycin resistance of many different tumors, and we show that a third mTOR complex, mTORC3, contributes to this resistance. The ETS (E26 transformation–specific) transcription factor ETV7 interacts with mTOR in the cytoplasm and assembles mTORC3, which is independent of ETV7’s transcriptional activity. This complex exhibits bimodal mTORC1/2 activity but is devoid of crucial mTORC1/2 components. Many human cancers activate mTORC3 at considerable frequency, and tumor cell lines that lose mTORC3 expression become rapamycin-sensitive. We show mTORC3’s tumorigenicity in a rhabdomyosarcoma mouse model in which transgenic ETV7 expression accelerates tumor onset and promotes tumor penetrance. Discovery of mTORC3 represents an mTOR paradigm shift and identifies a novel target for anticancer drug development.
Clinical Cancer Research | 2001
Lorina Dudkin; Michael B. Dilling; Pamela J. Cheshire; Franklin C. Harwood; Melinda G. Hollingshead; Susan G. Arbuck; Robert Travis; Edward A. Sausville; Peter J. Houghton
Journal of Biological Chemistry | 2004
Shile Huang; Lili Shu; John Easton; Franklin C. Harwood; Glen S. Germain; Hidenori Ichijo; Peter J. Houghton
Journal of Biological Chemistry | 2002
Michael B. Dilling; Glen S. Germain; Lorina Dudkin; Arun L. Jayaraman; Xiongwen Zhang; Franklin C. Harwood; Peter J. Houghton
Cancer Research | 2003
Kuntebommanahalli N. Thimmaiah; John Easton; Shile Huang; Karen A. Veverka; Glen S. Germain; Franklin C. Harwood; Peter J. Houghton
Collaboration
Dive into the Franklin C. Harwood's collaboration.
University of Texas Health Science Center at San Antonio
View shared research outputs