Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Franklin L. Nobrega is active.

Publication


Featured researches published by Franklin L. Nobrega.


Journal of Virology | 2013

Molecular aspects and comparative genomics of bacteriophage endolysins

Hugo Alexandre Mendes Oliveira; Luís D. R. Melo; Sílvio Roberto Branco Santos; Franklin L. Nobrega; E. C. Ferreira; Nuno Cerca; Joana Azeredo; Leon Kluskens

ABSTRACT Phages are recognized as the most abundant and diverse entities on the planet. Their diversity is determined predominantly by their dynamic adaptation capacities when confronted with different selective pressures in an endless cycle of coevolution with a widespread group of bacterial hosts. At the end of the infection cycle, progeny virions are confronted with a rigid cell wall that hinders their release into the environment and the opportunity to start a new infection cycle. Consequently, phages encode hydrolytic enzymes, called endolysins, to digest the peptidoglycan. In this work, we bring to light all phage endolysins found in completely sequenced double-stranded nucleic acid phage genomes and uncover clues that explain the phage-endolysin-host ecology that led phages to recruit unique and specialized endolysins.


Cell Reports | 2018

Cas4 Facilitates PAM-Compatible Spacer Selection during CRISPR Adaptation

Sebastian N. Kieper; Cristóbal Almendros; Juliane Behler; Rebecca E. McKenzie; Franklin L. Nobrega; Anna C. Haagsma; Jochem N.A. Vink; Wolfgang R. Hess; Stan J. J. Brouns

Summary CRISPR-Cas systems adapt their immunological memory against their invaders by integrating short DNA fragments into clustered regularly interspaced short palindromic repeat (CRISPR) loci. While Cas1 and Cas2 make up the core machinery of the CRISPR integration process, various class I and II CRISPR-Cas systems encode Cas4 proteins for which the role is unknown. Here, we introduced the CRISPR adaptation genes cas1, cas2, and cas4 from the type I-D CRISPR-Cas system of Synechocystis sp. 6803 into Escherichia coli and observed that cas4 is strictly required for the selection of targets with protospacer adjacent motifs (PAMs) conferring I-D CRISPR interference in the native host Synechocystis. We propose a model in which Cas4 assists the CRISPR adaptation complex Cas1-2 by providing DNA substrates tailored for the correct PAM. Introducing functional spacers that target DNA sequences with the correct PAM is key to successful CRISPR interference, providing a better chance of surviving infection by mobile genetic elements.


Scientific Reports | 2016

Genetically manipulated phages with improved pH resistance for oral administration in veterinary medicine

Franklin L. Nobrega; Ana Rita Costa; José F. Santos; Melvin F. Siliakus; Jan W. M. van Lent; S.W.M. Kengen; Joana Azeredo; Leon Kluskens

Orally administered phages to control zoonotic pathogens face important challenges, mainly related to the hostile conditions found in the gastrointestinal tract (GIT). These include temperature, salinity and primarily pH, which is exceptionally low in certain compartments. Phage survival under these conditions can be jeopardized and undermine treatment. Strategies like encapsulation have been attempted with relative success, but are typically complex and require several optimization steps. Here we report a simple and efficient alternative, consisting in the genetic engineering of phages to display lipids on their surfaces. Escherichia coli phage T7 was used as a model and the E. coli PhoE signal peptide was genetically fused to its major capsid protein (10 A), enabling phospholipid attachment to the phage capsid. The presence of phospholipids on the mutant phages was confirmed by High Performance Thin Layer Chromatography, Dynamic Light Scattering and phospholipase assays. The stability of phages was analysed in simulated GIT conditions, demonstrating improved stability of the mutant phages with survival rates 102–107 pfu.mL−1 higher than wild-type phages. Our work demonstrates that phage engineering can be a good strategy to improve phage tolerance to GIT conditions, having promising application for oral administration in veterinary medicine.


Trends in Biotechnology | 2018

Exploiting Bacteriophage Proteomes: The Hidden Biotechnological Potential

Sílvio Roberto Branco Santos; Ana Rita Costa; Carla A. O. C. M. Carvalho; Franklin L. Nobrega; Joana Azeredo

Bacteriophages encode many distinct proteins for the successful infection of a bacterial host. Each protein plays a specific role in the phage replication cycle, from host recognition, through takeover of the host machinery, and up to cell lysis for progeny release. As the roles of these proteins are being revealed, more biotechnological applications can be anticipated. Phage-encoded proteins are now being explored for the control, detection, and typing of bacteria; as vehicles for drug delivery; and for vaccine development. In this review, we discuss how engineering approaches can be used to improve the natural properties of these proteins and set forth the most innovative applications that demonstrate the unlimited biotechnological potential held by phage-encoded proteins.


PLOS ONE | 2016

Selection of Novel Peptides Homing the 4T1 CELL Line: Exploring Alternative Targets for Triple Negative Breast Cancer.

Vera Silva; Débora Maria Cavalcanti Ferreira; Franklin L. Nobrega; Ivone M. Martins; Leon Kluskens; L. R. Rodrigues

The use of bacteriophages to select novel ligands has been widely explored for cancer therapy. Their application is most warranted in cancer subtypes lacking knowledge on how to target the cancer cells in question, such as the triple negative breast cancer, eventually leading to the development of alternative nanomedicines for cancer therapeutics. Therefore, the following study aimed to select and characterize novel peptides for a triple negative breast cancer murine mammary carcinoma cell line– 4T1. Using phage display, 7 and 12 amino acid random peptide libraries were screened against the 4T1 cell line. A total of four rounds, plus a counter-selection round using the 3T3 murine fibroblast cell line, was performed. The enriched selective peptides were characterized and their binding capacity towards 4T1 tissue samples was confirmed by immunofluorescence and flow cytometry analysis. The selected peptides (4T1pep1 –CPTASNTSC and 4T1pep2—EVQSSKFPAHVS) were enriched over few rounds of selection and exhibited specific binding to the 4T1 cell line. Interestingly, affinity to the human MDA-MB-231 cell line was also observed for both peptides, promoting the translational application of these novel ligands between species. Additionally, bioinformatics analysis suggested that both peptides target human Mucin-16. This protein has been implicated in different types of cancer, as it is involved in many important cellular functions. This study strongly supports the need of finding alternative targeting systems for TNBC and the peptides herein selected exhibit promising future application as novel homing peptides for breast cancer therapy.


Trends in Microbiology | 2018

Molecular and Evolutionary Determinants of Bacteriophage Host Range

Patrick A. de Jonge; Franklin L. Nobrega; Stan J. J. Brouns; Bas E. Dutilh

The host range of a bacteriophage is the taxonomic diversity of hosts it can successfully infect. Host range, one of the central traits to understand in phages, is determined by a range of molecular interactions between phage and host throughout the infection cycle. While many well studied model phages seem to exhibit a narrow host range, recent ecological and metagenomics studies indicate that phages may have specificities that range from narrow to broad. There is a growing body of studies on the molecular mechanisms that enable phages to infect multiple hosts. These mechanisms, and their evolution, are of considerable importance to understanding phage ecology and the various clinical, industrial, and biotechnological applications of phage. Here we review knowledge of the molecular mechanisms that determine host range, provide a framework defining broad host range in an evolutionary context, and highlight areas for additional research.


BMC Cancer | 2016

Screening and characterization of novel specific peptides targeting MDA-MB-231 claudin-low breast carcinoma by computer-aided phage display methodologies

Franklin L. Nobrega; Débora Ferreira; Ivone M. Martins; Maria Suarez-Diez; Joana Azeredo; Leon Kluskens; L. R. Rodrigues

BackgroundClaudin-low breast carcinoma represents 19% of all breast cancer cases and is characterized by an aggressive progression with metastatic nature and high rates of relapse. Due to a lack of known specific molecular biomarkers for this breast cancer subtype, there are no targeted therapies available, which results in the worst prognosis of all breast cancer subtypes. Hence, the identification of novel biomarkers for this type of breast cancer is highly relevant for an early diagnosis. Additionally, claudin-low breast carcinoma peptide ligands can be used to design powerful drug delivery systems that specifically target this type of breast cancer.MethodsIn this work, we propose the identification of peptides for the specific recognition of MDA-MB-231, a cell line representative of claudin-low breast cancers, using phage display (both conventional panning and BRASIL). Binding assays, such as phage forming units and ELISA, were performed to select the most interesting peptides (i.e., specific to the target cells) and bioinformatics approaches were applied to putatively identify the biomarkers to which these peptides bind.ResultsTwo peptides were selected using this methodology specifically targeting MDA-MB-231 cells, as demonstrated by a 4 to 9 log higher affinity as compared to control cells. The use of bioinformatics approaches provided relevant insights into possible cell surface targets for each peptide identified.ConclusionsThe peptides herein identified may contribute to an earlier detection of claudin-low breast carcinomas and possibly to develop more individualized therapies.


Trends in Microbiology | 2018

Bowel Biofilms: Tipping Points between a Healthy and Compromised Gut?

Hanne L.P. Tytgat; Franklin L. Nobrega; John van der Oost; Willem M. de Vos

Bacterial communities are known to impact human health and disease. Mixed species biofilms, mostly pathogenic in nature, have been observed in dental and gastric infections as well as in intestinal diseases, chronic gut wounds and colon cancer. Apart from the appendix, the presence of thick polymicrobial biofilms in the healthy gut mucosa is still debated. Polymicrobial biofilms containing potential pathogens appear to be an early-warning signal of developing disease and can be regarded as a tipping point between a healthy and a diseased state of the gut mucosa. Key biofilm-forming pathogens and associated molecules hold promise as biomarkers. Criteria to distinguish microcolonies from biofilms are crucial to provide clarity when reporting biofilm-related phenomena in health and disease in the gut.


Nature Reviews Microbiology | 2018

Targeting mechanisms of tailed bacteriophages

Franklin L. Nobrega; Marnix Vlot; Patrick A. de Jonge; Lisa L. Dreesens; Hubertus J. E. Beaumont; Rob Lavigne; Bas E. Dutilh; Stan J. J. Brouns

Phages differ substantially in the bacterial hosts that they infect. Their host range is determined by the specific structures that they use to target bacterial cells. Tailed phages use a broad range of receptor-binding proteins, such as tail fibres, tail spikes and the central tail spike, to target their cognate bacterial cell surface receptors. Recent technical advances and new structure–function insights have begun to unravel the molecular mechanisms and temporal dynamics that govern these interactions. Here, we review the current understanding of the targeting machinery and mechanisms of tailed phages. These new insights and approaches pave the way for the application of phages in medicine and biotechnology and enable deeper understanding of their ecology and evolution.Many phages use tails to attach to and penetrate the cell envelope of their bacterial hosts. In this Review, Brouns and colleagues explore recent structural and mechanistic insights into the interaction of phage tails with receptors on the bacterial surface.


Genome Announcements | 2018

Complete genome sequence of the Escherichia coli phage Ayreon

Marnix Vlot; Franklin L. Nobrega; Che F. A. Wong; Yue Liu; Stan J. J. Brouns

ABSTRACT We report the whole-genome sequence of a new Escherichia coli temperate phage, Ayreon, comprising a linear double-stranded DNA (dsDNA) genome of 44,708 bp.

Collaboration


Dive into the Franklin L. Nobrega's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stan J. J. Brouns

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge