Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Frans C. T. van der Helm is active.

Publication


Featured researches published by Frans C. T. van der Helm.


Journal of Biomechanical Engineering-transactions of The Asme | 1995

Three-Dimensional Recording and Description of Motions of the Shoulder Mechanism

Frans C. T. van der Helm; G.M. Pronk

A measurement technique is presented for recording positions of the bones of the shoulder mechanism, i.e., thorax, clavicula, scapula and humerus, in 3-D space, based on palpating and recording positions of bony landmarks. The palpation technique implies that only static positions can be measured. Accuracy of retrieving bony landmarks is checked on-line using rigid body assumptions. The measurement error is calculated afterwards and is comparable with cinegraphic methods. Axial rotation of the clavicula is estimated by minimizing rotations in the acromioclavicular joint. A number of motion definitions is compared by means of interindividual variation and subjective interpretability. Two useful definitions are proposed for describing motions of the shoulder mechanism. Four conditions have been recorded: abduction and anteflexion of the humerus both with and without additional weight in the hand. Abduction and anteflexion result in large differences in scapular and clavicular motions. The effect of additional weight in the hand on the position of the shoulder girdle is negligible.


Biological Cybernetics | 2001

An adaptive model of sensory integration in a dynamic environment applied to human stance control

Herman van der Kooij; R. Jacobs; Bart F.J.M. Koopman; Frans C. T. van der Helm

Abstract. An adaptive estimator model of human spatial orientation is presented. The adaptive model dynamically weights sensory error signals. More specific, the model weights the difference between expected and actual sensory signals as a function of environmental conditions. The model does not require any changes in model parameters. Differences with existing models of spatial orientation are that: (1) environmental conditions are not specified but estimated, (2) the sensor noise characteristics are the only parameters supplied by the model designer, (3) history-dependent effects and mental resources can be modelled, and (4) vestibular thresholds are not included in the model; instead vestibular-related threshold effects are predicted by the model. The model was applied to human stance control and evaluated with results of a visually induced sway experiment. From these experiments it is known that the amplitude of visually induced sway reaches a saturation level as the stimulus level increases. This saturation level is higher when the support base is sway referenced. For subjects experiencing vestibular loss, these saturation effects do not occur. Unknown sensory noise characteristics were found by matching model predictions with these experimental results. Using only five model parameters, far more than five data points were successfully predicted. Model predictions showed that both the saturation levels are vestibular related since removal of the vestibular organs in the model removed the saturation effects, as was also shown in the experiments. It seems that the nature of these vestibular-related threshold effects is not physical, since in the model no threshold is included. The model results suggest that vestibular-related thresholds are the result of the processing of noisy sensory and motor output signals. Model analysis suggests that, especially for slow and small movements, the environment postural orientation can not be estimated optimally, which causes sensory illusions. The model also confirms the experimental finding that postural orientation is history dependent and can be shaped by instruction or mental knowledge. In addition the model predicts that: (1) vestibular-loss patients cannot handle sensory conflicting situations and will fall down, (2) during sinusoidal support-base translations vestibular function is needed to prevent falling, (3) loss of somatosensory information from the feet results in larger postural sway for sinusoidal support-base translations, and (4) loss of vestibular function results in falling for large support-base rotations with the eyes closed. These predictions are in agreement with experimental results.


Journal of Neuroscience Methods | 2005

Comparison of different methods to identify and quantify balance control

Herman van der Kooij; Edwin H.F. van Asseldonk; Frans C. T. van der Helm

The goal of this paper is to clarify the methodological aspects of studies of human balance during quiet standing and perturbed standing. Centre of mass (CoM), centre of pressure (CoP) and electromyogram (EMG) or similar measures are commonly recorded to quantify human balance control. In this paper we show that to identify the rigid body dynamics and the physiological mechanism that controls the body separately, one has to externally perturb the body with known perturbations and to use the indirect (IA) or joint input–output approach (JA) for identification. However, in many balance control studies the direct approach (DA) have been used, which is well suited to study open-loop systems but will give erroneous results when applied to a closed-loop system, as in human balance control. The cross-correlation function and linear regression are examples of the erroneous application of the DA approach in human balance control studies. The consequences of this erroneous DA are given. In addition a new application of the JA is presented that identifies physiological mechanisms that control balance, including passive and active feedback pathways. This new method is compared with existing identification schemes that use the IA and an existing JA that estimates the active pathway. Also it is shown how descriptive measures such as the power spectral densities (PSD) or the stabilogram diffusion plot (SDP) of the CoP and/or CoM depends on the PSD of internal perturbations and sensor noise, which are not measured. Although descriptive measures can be used to describe the state of the balance control system for a particular situation, it does not separate the dynamics of unknown processes that perturb balance from the dynamics of the active and passive feedback mechanisms that controls balance. Only the IA and the preferred JA can give estimates of the passive and active passive feedback mechanisms that control balance.


Journal of Biomechanics | 1999

Measuring muscle and joint geometry parameters of a shoulder for modeling purposes.

Mary D. Klein Breteler; Cornelis W. Spoor; Frans C. T. van der Helm

An extensive set of muscle and joint geometry parameters was measured of the right shoulder of an embalmed male. For all muscles the optimal muscle fiber length was determined by laser diffraction measurements of sarcomere length. In addition, tendon length and physiological cross-sectional area were determined. The parameter set was needed to enhance the reliability of a computer model of the shoulder (Van der Helm, 1994a,b Journal of Biomechanics 27, 527-550, 551-569). With the model, an abduction of the arm was simulated in seven positions, at 30 degrees intervals. In each of the simulated arm positions, actual sarcomere lengths were calculated from the lengths of 104 muscle elements, distributed over 16 shoulder muscles. For most muscle elements, the simulated abduction appeared to take place within the sarcomere length range in which the muscle elements can exert force. The muscle elements can then act on the ascending limb as well as on the plateau and on the descending limb of the relative force-length curves of sarcomeres. The produced data set is not only important for the refinement of shoulder modeling, but also for functional analyses of shoulder movements in general.


Biological Cybernetics | 2002

Adaptation of reflexive feedback during arm posture to different environments

Erwin de Vlugt; Alfred C. Schouten; Frans C. T. van der Helm

Abstract. In this study we have examined the ability of the central nervous system (CNS) to use spinal reflexes to minimize displacements during postural control while continuous force perturbations were applied at the hand. The subjects were instructed to minimize the displacements of the hand from a reference position that resulted from the force perturbations. The perturbations were imposed in one direction by means of a hydraulic manipulator of which the virtual mass and damping were varied. Resistance to the perturbations came from intrinsic and reflexive stiffness, and from the virtual environment. It is hypothesized that reflexive feedback during posture maintenance is optimally adjusted such that position deviations are minimal for a given virtual environment. Frequency response functions were estimated, capturing all mechanical properties of the arm at the end point (hand) level. Intrinsic and reflexive parameters were quantified by fitting a linear neuromuscular model to the frequency responses. The reflexive length feedback gain increased strongly with damping and little with the eigenfrequency of the total combined system (i.e. arm plus environment). The reflexive velocity feedback gain decreased slightly with relative damping at the largest eigenfrequency and more markedly at smaller eigenfrequencies. In the case of highest reflex gains, the total system remained stable and sufficiently damped while the responses of only the arm were severely underdamped and sometimes even unstable. To further analyse these results, a model optimization was performed. Intrinsic and reflexive parameters were optimized such that two criterion functions were minimized. The first concerns performance and penalized hand displacements from a reference point. The second one weights afferent control effort to avoid inefficient feedback. The simulations showed good similarities with the estimated values. Length feedback was adequately predicted by the model for all conditions. The predicted velocity feedback gains were larger in all cases, probably indicating a mutual gain limiting relation between length and velocity afferent signals. The results suggest that both reflex gains seem to be adjusted by the CNS, where in particular the length feedback gain was optimal so as to maximize performance at minimum control effort.


Journal of Biomechanics | 2003

Measuring morphological parameters of the pelvic floor for finite element modelling purposes

Štěpán Janda; Frans C. T. van der Helm; Sjoerd B de Blok

The goal of this study was to obtain a complete data set needed for studying the complex biomechanical behaviour of the pelvic floor muscles using a computer model based on the finite element (FE) theory. The model should be able to predict the effect of surgical interventions and give insight into the function of pelvic floor muscles. Because there was a lack of any information concerning morphological parameters of the pelvic floor muscle structures, we performed an experimental measurement to uncover those morphological parameters. Geometric parameters as well as muscle parameters of the pelvic floor muscles were measured on an embalmed female cadaver. A three-dimensional (3D) geometric data set of the pelvic floor including muscle fibre directions was obtained using a palpator device. A 3D surface model based on the experimental data, needed for mathematical modelling of the pelvic floor, was created. For all parts of the diaphragma pelvis, the optimal muscle fibre length was determined by laser diffraction measurements of the sarcomere length. In addition, other muscle parameters such as physiological cross-sectional area and total muscle fibre length were determined. Apart from these measurements we obtained a data set of the pelvic floor structures based on nuclear magnetic resonance imaging (MRI) on the same cadaver specimen. The purpose of this experiment was to discover the relationship between the MRI morphology and geometrical parameters obtained from the previous measurements. The produced data set is not only important for biomechanical modelling of the pelvic floor muscles, but it also describes the geometry of muscle fibres and is useful for functional analysis of the pelvic floor in general. By the use of many reference landmarks all these morphologic data concerning fibre directions and optimal fibre length can be morphed to the geometrical data based on segmentation from MRI scans. These data can be directly used as an input for building a mathematical model based on FE theory.


IEEE Transactions on Neural Systems and Rehabilitation Engineering | 2008

The Effects on Kinematics and Muscle Activity of Walking in a Robotic Gait Trainer During Zero-Force Control

Edwin H.F. van Asseldonk; Jan F. Veneman; R. Ekkelenkamp; Jaap Buurke; Frans C. T. van der Helm; Herman van der Kooij

“Assist as needed” control algorithms promote activity of patients during robotic gait training. Implementing these requires a free walking mode of a device, as unassisted motions should not be hindered. The goal of this study was to assess the normality of walking in the free walking mode of the LOPES gait trainer, an 8 degrees-of-freedom lightweight impedance controlled exoskeleton. Kinematics, gait parameters and muscle activity of walking in a free walking mode in the device were compared with those of walking freely on a treadmill. Average values and variability of the spatio-temporal gait variables showed no or small (relative to cycle-to-cycle variability) changes and the kinematics showed a significant and relevant decrease in knee angle range only. Muscles involved in push off showed a small decrease, whereas muscles involved in acceleration and deceleration of the swing leg showed an increase of their activity. Timing of the activity was mainly unaffected. Most of the observed differences could be ascribed to the inertia of the exoskeleton. Overall, walking with the LOPES resembled free walking, although this required several adaptations in muscle activity. These adaptations are such that we expect that Assist as Needed training can be implemented in LOPES.


Journal of Neuroscience Methods | 2003

Closed-loop multivariable system identification for the characterization of the dynamic arm compliance using continuous force disturbances: a model study

Erwin de Vlugt; Alfred C. Schouten; Frans C. T. van der Helm

This study presents a new multivariable closed-loop identification technique for estimating the dynamic compliance of the multijoint human arm during posture maintenance. The method is designed for the application of continuous force disturbances that facilitate interaction of the limb with the environment. The dynamic compliance of the arm arises from different physiological mechanisms and is important for maintaining stable postures and to suppress disturbances. Estimates can be useful to analyze the ability of the nervous system to adapt the arm compliance to different types of disturbances and environments. The technique is linear and requires no a priori knowledge of the system. Linear system behavior is justified for posture tasks where the hand position deviates slightly from a reference position. Interaction results in a closed-loop configuration of arm and environment. The problem with previous methods is the restriction to open-loop systems. With the current technique, the dynamic arm compliance is separately estimated from the closed-loop. The accuracy of the identification technique is tested by simulations for different values of the dynamic compliance of the arm and environment and for different methodological parameters. It is concluded that the identification technique is accurate, even for short observation periods and severe noise.


Experimental Neurology | 2006

Disentangling the contribution of the paretic and non-paretic ankle to balance control in stroke patients

Edwin H.F. van Asseldonk; Jaap Buurke; Bastiaan R. Bloem; G.J. Renzenbrink; A.V. Nene; Frans C. T. van der Helm; Herman van der Kooij

During stroke recovery, restoration of the paretic ankle and compensation in the non-paretic ankle may contribute to improved balance maintenance. We examine a new approach to disentangle these recovery mechanisms by objectively quantifying the contribution of each ankle to balance maintenance. Eight chronic hemiparetic patients were included. Balance responses were elicited by continuous random platform movements. We measured body sway and ground reaction forces below each foot to calculate corrective ankle torques in each leg. These measurements yielded the Frequency Response Function (FRF) of the stabilizing mechanisms, which expresses the amount and timing of the generated corrective torque in response to sway at the specified frequencies. The FRFs were used to calculate the relative contribution of the paretic and non-paretic ankle to the total amount of generated corrective torque to correct sway. All patients showed a clear asymmetry in the balance contribution in favor of the non-paretic ankle. Paretic balance contribution was significantly smaller than the contribution of the paretic leg to weight bearing, and did not show a clear relation with the contribution to weight bearing. In contrast, a group of healthy subjects instructed to distribute their weight asymmetrically showed a one-on-one relation between the contribution to weight bearing and to balance. We conclude that the presented approach objectively quantifies the contribution of each ankle to balance maintenance. Application of this method in longitudinal surveys of balance rehabilitation makes it possible to disentangle the different recovery mechanisms. Such insights will be critical for the development and evaluation of rehabilitation strategies.


Vision Research | 2006

A finite-element analysis model of orbital biomechanics

S. Schutte; Sven S.P.W. van den Bedem; Fred van Keulen; Frans C. T. van der Helm; Huib Simonsz

To reach a better understanding of the suspension of the eye in the orbit, an orbital mechanics model based upon finite-element analysis (FEA) has been developed. The FEA model developed contains few prior assumptions or constraints (e.g., the position of the eye in the orbit), allowing modeling of complex three-dimensional tissue interactions; unlike most current models of eye motility. Active eye movements and forced ductions were simulated and showed that the supporting action of the orbital fat plays an important role in the suspension of the eye in the orbit and in stabilization of rectus muscle paths.

Collaboration


Dive into the Frans C. T. van der Helm's collaboration.

Top Co-Authors

Avatar

Alfred C. Schouten

Delft University of Technology

View shared research outputs
Top Co-Authors

Avatar

Erwin de Vlugt

Delft University of Technology

View shared research outputs
Top Co-Authors

Avatar

David A. Abbink

Delft University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Max Mulder

Delft University of Technology

View shared research outputs
Top Co-Authors

Avatar

Jurriaan H. de Groot

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

S. Schutte

Delft University of Technology

View shared research outputs
Top Co-Authors

Avatar

Winfred Mugge

Delft University of Technology

View shared research outputs
Top Co-Authors

Avatar

M. Mulder

Delft University of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge