Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Frans P.M. Cremers is active.

Publication


Featured researches published by Frans P.M. Cremers.


Progress in Retinal and Eye Research | 2008

Leber congenital amaurosis: genes, proteins and disease mechanisms.

Anneke I. den Hollander; Ronald Roepman; Robert K. Koenekoop; Frans P.M. Cremers

Leber congenital amaurosis (LCA) is the most severe retinal dystrophy causing blindness or severe visual impairment before the age of 1 year. Linkage analysis, homozygosity mapping and candidate gene analysis facilitated the identification of 14 genes mutated in patients with LCA and juvenile retinal degeneration, which together explain approximately 70% of the cases. Several of these genes have also been implicated in other non-syndromic or syndromic retinal diseases, such as retinitis pigmentosa and Joubert syndrome, respectively. CEP290 (15%), GUCY2D (12%), and CRB1 (10%) are the most frequently mutated LCA genes; one intronic CEP290 mutation (p.Cys998X) is found in approximately 20% of all LCA patients from north-western Europe, although this frequency is lower in other populations. Despite the large degree of genetic and allelic heterogeneity, it is possible to identify the causative mutations in approximately 55% of LCA patients by employing a microarray-based, allele-specific primer extension analysis of all known DNA variants. The LCA genes encode proteins with a wide variety of retinal functions, such as photoreceptor morphogenesis (CRB1, CRX), phototransduction (AIPL1, GUCY2D), vitamin A cycling (LRAT, RDH12, RPE65), guanine synthesis (IMPDH1), and outer segment phagocytosis (MERTK). Recently, several defects were identified that are likely to affect intra-photoreceptor ciliary transport processes (CEP290, LCA5, RPGRIP1, TULP1). As the eye represents an accessible and immune-privileged organ, it appears to be uniquely suitable for human gene replacement therapy. Rodent (Crb1, Lrat, Mertk, Rpe65, Rpgrip1), avian (Gucy2D) and canine (Rpe65) models for LCA and profound visual impairment have been successfully corrected employing adeno-associated virus or lentivirus-based gene therapy. Moreover, phase 1 clinical trials have been carried out in humans with RPE65 deficiencies. Apart from ethical considerations inherently linked to treating children, major obstacles for the treatment of LCA could be the putative developmental deficiencies in the visual cortex in persons blind from birth (amblyopia), the absence of sufficient numbers of viable photoreceptor or RPE cells in LCA patients, and the unknown and possibly toxic effects of overexpression of transduced genes. Future LCA research will focus on the identification of the remaining causal genes, the elucidation of the molecular mechanisms of disease in the retina, and the development of gene therapy approaches for different genetic subtypes of LCA.


Nature Genetics | 1999

Mutations in a human homologue of Drosophila crumbs cause retinitis pigmentosa (RP12)

Anneke I. den Hollander; Jacoline B. ten Brink; Yvette J.M. de Kok; Simone van Soest; L. Ingeborgh van den Born; Marc A. van Driel; Dorien J. R. van de Pol; Annette Payne; Shomi S. Bhattacharya; Ulrich Kellner; Carel B. Hoyng; Andries Westerveld; Han G. Brunner; Elisabeth M. Bleeker-Wagemakers; August F. Deutman; John R. Heckenlively; Frans P.M. Cremers; Arthur A. B. Bergen

Retinitis pigmentosa (RP) comprises a clinically and genetically heterogeneous group of diseases that afflicts approximately 1.5 million people worldwide. Affected individuals suffer from a progressive degeneration of the photoreceptors, eventually resulting in severe visual impairment. To isolate candidate genes for chorioretinal diseases, we cloned cDNAs specifically or preferentially expressed in the human retina and the retinal pigment epithelium (RPE) through a novel suppression subtractive hybridization (SSH) method. One of these cDNAs (RET3C11) mapped to chromosome 1q31–q32.1, a region harbouring a gene involved in a severe form of autosomal recessive RP characterized by a typical preservation of the para-arteriolar RPE (RP12; ref. 3). The full-length cDNA encodes an extracellular protein with 19 EGF-like domains, 3 laminin A G-like domains and a C-type lectin domain. This protein is homologous to the Drosophila melanogaster protein crumbs (CRB), and denoted CRB1 (crumbs homologue 1). In ten unrelated RP patients with preserved para-arteriolar RPE, we identified a homozygous AluY insertion disrupting the ORF, five homozygous missense mutations and four compound heterozygous mutations in CRB1. The similarity to CRB suggests a role for CRB1 in cell-cell interaction and possibly in the maintenance of cell polarity in the retina. The distinct RPE abnormalities observed in RP12 patients suggest that CRB1 mutations trigger a novel mechanism of photoreceptor degeneration.


The Lancet | 2014

Retinal gene therapy in patients with choroideremia: initial findings from a phase 1/2 clinical trial

Robert E. MacLaren; Markus Groppe; Alun R. Barnard; Charles L. Cottriall; Tanya Tolmachova; Len Seymour; K. Reed Clark; Matthew J. During; Frans P.M. Cremers; Graeme C.M. Black; Andrew J. Lotery; Susan M. Downes; Andrew R. Webster; Miguel C. Seabra

Summary Background Choroideremia is an X-linked recessive disease that leads to blindness due to mutations in the CHM gene, which encodes the Rab escort protein 1 (REP1). We assessed the effects of retinal gene therapy with an adeno-associated viral (AAV) vector encoding REP1 (AAV.REP1) in patients with this disease. Methods In a multicentre clinical trial, six male patients (aged 35–63 years) with choroideremia were administered AAV.REP1 (0·6–1·0×1010 genome particles, subfoveal injection). Visual function tests included best corrected visual acuity, microperimetry, and retinal sensitivity tests for comparison of baseline values with 6 months after surgery. This study is registered with ClinicalTrials.gov, number NCT01461213. Findings Despite undergoing retinal detachment, which normally reduces vision, two patients with advanced choroideremia who had low baseline best corrected visual acuity gained 21 letters and 11 letters (more than two and four lines of vision). Four other patients with near normal best corrected visual acuity at baseline recovered to within one to three letters. Mean gain in visual acuity overall was 3·8 letters (SE 4·1). Maximal sensitivity measured with dark-adapted microperimetry increased in the treated eyes from 23·0 dB (SE 1·1) at baseline to 25·3 dB (1·3) after treatment (increase 2·3 dB [95% CI 0·8–3·8]). In all patients, over the 6 months, the increase in retinal sensitivity in the treated eyes (mean 1·7 [SE 1·0]) was correlated with the vector dose administered per mm2 of surviving retina (r=0·82, p=0·04). By contrast, small non-significant reductions (p>0·05) were noted in the control eyes in both maximal sensitivity (–0·8 dB [1·5]) and mean sensitivity (–1·6 dB [0·9]). One patient in whom the vector was not administered to the fovea re-established variable eccentric fixation that included the ectopic island of surviving retinal pigment epithelium that had been exposed to vector. Interpretation The initial results of this retinal gene therapy trial are consistent with improved rod and cone function that overcome any negative effects of retinal detachment. These findings lend support to further assessment of gene therapy in the treatment of choroideremia and other diseases, such as age-related macular degeneration, for which intervention should ideally be applied before the onset of retinal thinning. Funding UK Department of Health and Wellcome Trust.


Nature Genetics | 1999

Heterozygous mutations in the gene encoding noggin affect human joint morphogenesis

Yaoqin Gong; Deborah Krakow; Jose Marcelino; Douglas J. Wilkin; David Chitayat; Riyana Babul-Hirji; Louanne Hudgins; C.W.R.J. Cremers; Frans P.M. Cremers; Han G. Brunner; Kent Reinker; David L. Rimoin; Daniel H. Cohn; Frances R. Goodman; William Reardon; Michael A. Patton; Clair A. Francomano; Matthew L. Warman

The secreted polypeptide noggin (encoded by the Nog gene) binds and inactivates members of the transforming growth factor β superfamily of signalling proteins (TGFβ-FMs), such as BMP4 (ref. 1). By diffusing through extracellular matrices more efficiently than TGFβ-FMs, noggin may have a principal role in creating morphogenic gradients. During mouse embryogenesis, Nog is expressed at multiple sites, including developing bones. Nog-/- mice die at birth from multiple defects that include bony fusion of the appendicular skeleton. We have identified five dominant human NOG mutations in unrelated families segregating proximal symphalangism (SYM1; OMIM 185800) and a de novo mutation in a patient with unaffected parents. We also found a dominant NOG mutation in a family segregating multiple synostoses syndrome (SYNS1; OMIM 186500); both SYM1 and SYNS1 have multiple joint fusion as their principal feature. All seven NOG mutations alter evolutionarily conserved amino acid residues. The findings reported here confirm that NOG is essential for joint formation and suggest that NOG requirements during skeletogenesis differ between species and between specific skeletal elements within species.


Nature Genetics | 2007

Mutations in the gene encoding the basal body protein RPGRIP1L, a nephrocystin-4 interactor, cause Joubert syndrome.

Heleen H. Arts; Dan Doherty; Sylvia E. C. van Beersum; Melissa A. Parisi; Stef J.F. Letteboer; Nicholas T. Gorden; Theo A. Peters; Tina Märker; Krysta Voesenek; Aileen Kartono; Hamit Özyürek; Federico M. Farin; Hester Y. Kroes; Uwe Wolfrum; Han G. Brunner; Frans P.M. Cremers; Ian A. Glass; N.V.A.M. Knoers; Ronald Roepman

Protein-protein interaction analyses have uncovered a ciliary and basal body protein network that, when disrupted, can result in nephronophthisis (NPHP), Leber congenital amaurosis, Senior-Løken syndrome (SLSN) or Joubert syndrome (JBTS). However, details of the molecular mechanisms underlying these disorders remain poorly understood. RPGRIP1-like protein (RPGRIP1L) is a homolog of RPGRIP1 (RPGR-interacting protein 1), a ciliary protein defective in Leber congenital amaurosis. We show that RPGRIP1L interacts with nephrocystin-4 and that mutations in the gene encoding nephrocystin-4 (NPHP4) that are known to cause SLSN disrupt this interaction. RPGRIP1L is ubiquitously expressed, and its protein product localizes to basal bodies. Therefore, we analyzed RPGRIP1L as a candidate gene for JBTS and identified loss-of-function mutations in three families with typical JBTS, including the characteristic mid-hindbrain malformation. This work identifies RPGRIP1L as a gene responsible for JBTS and establishes a central role for cilia and basal bodies in the pathophysiology of this disorder.


American Journal of Human Genetics | 2001

CNGA3 Mutations in Hereditary Cone Photoreceptor Disorders

Bernd Wissinger; Daphne Gamer; Herbert Jägle; Roberto Giorda; Tim Marx; Simone Mayer; Sabine Tippmann; Martina Broghammer; Bernhard Jurklies; Thomas Rosenberg; Samuel G. Jacobson; E. Cumhur Sener; Sinan Tatlipinar; Carel B. Hoyng; Claudio Castellan; Pierre Bitoun; Sten Andréasson; Günter Rudolph; Ulrich Kellner; Birgit Lorenz; Gerhard Wolff; Christine Verellen-Dumoulin; Marianne Schwartz; Frans P.M. Cremers; Eckart Apfelstedt-Sylla; Eberhart Zrenner; Roberto Salati; Lindsay T. Sharpe; Susanne Kohl

We recently showed that mutations in the CNGA3 gene encoding the alpha-subunit of the cone photoreceptor cGMP-gated channel cause autosomal recessive complete achromatopsia linked to chromosome 2q11. We now report the results of a first comprehensive screening for CNGA3 mutations in a cohort of 258 additional independent families with hereditary cone photoreceptor disorders. CNGA3 mutations were detected not only in patients with the complete form of achromatopsia but also in incomplete achromats with residual cone photoreceptor function and (rarely) in patients with evidence for severe progressive cone dystrophy. In total, mutations were identified in 53 independent families comprising 38 new CNGA3 mutations, in addition to the 8 mutations reported elsewhere. Apparently, both mutant alleles were identified in 47 families, including 16 families with presumed homozygous mutations and 31 families with two heterozygous mutations. Single heterozygous mutations were identified in six additional families. The majority of all known CNGA3 mutations (39/46) are amino acid substitutions compared with only four stop-codon mutations, two 1-bp insertions and one 3-bp in-frame deletion. The missense mutations mostly affect amino acids conserved among the members of the cyclic nucleotide gated (CNG) channel family and cluster at the cytoplasmic face of transmembrane domains (TM) S1 and S2, in TM S4, and in the cGMP-binding domain. Several mutations were identified recurrently (e.g., R277C, R283W, R436W, and F547L). These four mutations account for 41.8% of all detected mutant CNGA3 alleles. Haplotype analysis suggests that the R436W and F547L mutant alleles have multiple origins, whereas we found evidence that the R283W alleles, which are particularly frequent among patients from Scandinavia and northern Italy, have a common origin.


Human Mutation | 2012

Next-generation genetic testing for retinitis pigmentosa

Kornelia Neveling; Rob W.J. Collin; Christian Gilissen; Ramon A.C. van Huet; Linda Visser; Michael P. Kwint; Sabine Gijsen; Marijke N. Zonneveld; Nienke Wieskamp; Joep de Ligt; Anna M. Siemiatkowska; Lies H. Hoefsloot; Michael F. Buckley; Ulrich Kellner; Kari Branham; Anneke I. den Hollander; Alexander Hoischen; Carel B. Hoyng; B. Jeroen Klevering; L. Ingeborgh van den Born; Joris A. Veltman; Frans P.M. Cremers; Hans Scheffer

Molecular diagnostics for patients with retinitis pigmentosa (RP) has been hampered by extreme genetic and clinical heterogeneity, with 52 causative genes known to date. Here, we developed a comprehensive next‐generation sequencing (NGS) approach for the clinical molecular diagnostics of RP. All known inherited retinal disease genes (n = 111) were captured and simultaneously analyzed using NGS in 100 RP patients without a molecular diagnosis. A systematic data analysis pipeline was developed and validated to prioritize and predict the pathogenicity of all genetic variants identified in each patient, which enabled us to reduce the number of potential pathogenic variants from approximately 1,200 to zero to nine per patient. Subsequent segregation analysis and in silico predictions of pathogenicity resulted in a molecular diagnosis in 36 RP patients, comprising 27 recessive, six dominant, and three X‐linked cases. Intriguingly, De novo mutations were present in at least three out of 28 isolated cases with causative mutations. This study demonstrates the enormous potential and clinical utility of NGS in molecular diagnosis of genetically heterogeneous diseases such as RP. De novo dominant mutations appear to play a significant role in patients with isolated RP, having major implications for genetic counselling. Hum Mutat 33:963–972, 2012.


Human Mutation | 2013

A Post-Hoc Comparison of the Utility of Sanger Sequencing and Exome Sequencing for the Diagnosis of Heterogeneous Diseases

Kornelia Neveling; Ilse Feenstra; Christian Gilissen; Lies H. Hoefsloot; Erik-Jan Kamsteeg; Arjen R. Mensenkamp; Richard J. Rodenburg; Helger G. Yntema; Liesbeth Spruijt; Sascha Vermeer; Tuula Rinne; Koen L. van Gassen; Danielle Bodmer; Dorien Lugtenberg; Rick de Reuver; Wendy Buijsman; Ronny Derks; Nienke Wieskamp; Bert van den Heuvel; Marjolijn J. L. Ligtenberg; Hannie Kremer; David A. Koolen; Bart P. van de Warrenburg; Frans P.M. Cremers; Carlo Marcelis; Jan A.M. Smeitink; Saskia B. Wortmann; Wendy A. G. van Zelst-Stams; Joris A. Veltman; Han G. Brunner

The advent of massive parallel sequencing is rapidly changing the strategies employed for the genetic diagnosis and research of rare diseases that involve a large number of genes. So far it is not clear whether these approaches perform significantly better than conventional single gene testing as requested by clinicians. The current yield of this traditional diagnostic approach depends on a complex of factors that include gene‐specific phenotype traits, and the relative frequency of the involvement of specific genes. To gauge the impact of the paradigm shift that is occurring in molecular diagnostics, we assessed traditional Sanger‐based sequencing (in 2011) and exome sequencing followed by targeted bioinformatics analysis (in 2012) for five different conditions that are highly heterogeneous, and for which our center provides molecular diagnosis. We find that exome sequencing has a much higher diagnostic yield than Sanger sequencing for deafness, blindness, mitochondrial disease, and movement disorders. For microsatellite‐stable colorectal cancer, this was low under both strategies. Even if all genes that could have been ordered by physicians had been tested, the larger number of genes captured by the exome would still have led to a clearly superior diagnostic yield at a fraction of the cost.


Journal of Clinical Investigation | 2010

Lighting a candle in the dark: advances in genetics and gene therapy of recessive retinal dystrophies

Anneke I. den Hollander; Aaron D. Black; Jean Bennett; Frans P.M. Cremers

Nonsyndromic recessive retinal dystrophies cause severe visual impairment due to the death of photoreceptor and retinal pigment epithelium cells. These diseases until recently have been considered to be incurable. Molecular genetic studies in the last two decades have revealed the underlying molecular causes in approximately two-thirds of patients. The mammalian eye has been at the forefront of therapeutic trials based on gene augmentation in humans with an early-onset nonsyndromic recessive retinal dystrophy due to mutations in the retinal pigment epithelium-specific protein 65kDa (RPE65) gene. Tremendous challenges still lie ahead to extrapolate these studies to other retinal disease-causing genes, as human gene augmentation studies require testing in animal models for each individual gene and sufficiently large patient cohorts for clinical trials remain to be identified through cost-effective mutation screening protocols.


American Journal of Human Genetics | 2010

Next-generation sequencing of a 40 Mb linkage interval reveals TSPAN12 mutations in patients with familial exudative vitreoretinopathy.

Konstantinos Nikopoulos; Christian Gilissen; Alexander Hoischen; C. Erik van Nouhuys; F. Nienke Boonstra; Ellen A.W. Blokland; Peer Arts; Nienke Wieskamp; Tim M. Strom; C. Ayuso; Mauk A.D. Tilanus; Sanne Bouwhuis; Arijit Mukhopadhyay; Hans Scheffer; Lies H. Hoefsloot; Joris A. Veltman; Frans P.M. Cremers; Rob W.J. Collin

Familial exudative vitreoretinopathy (FEVR) is a genetically heterogeneous retinal disorder characterized by abnormal vascularisation of the peripheral retina, often accompanied by retinal detachment. To date, mutations in three genes (FZD4, LRP5, and NDP) have been shown to be causative for FEVR. In two large Dutch pedigrees segregating autosomal-dominant FEVR, genome-wide SNP analysis identified an FEVR locus of approximately 40 Mb on chromosome 7. Microsatellite marker analysis suggested similar at risk haplotypes in patients of both families. To identify the causative gene, we applied next-generation sequencing in the proband of one of the families, by analyzing all exons and intron-exon boundaries of 338 genes, in addition to microRNAs, noncoding RNAs, and other highly conserved genomic regions in the 40 Mb linkage interval. After detailed bioinformatic analysis of the sequence data, prioritization of all detected sequence variants led to three candidates to be considered as the causative genetic defect in this family. One of these variants was an alanine-to-proline substitution in the transmembrane 4 superfamily member 12 protein, encoded by TSPAN12. This protein has very recently been implicated in regulating the development of retinal vasculature, together with the proteins encoded by FZD4, LRP5, and NDP. Sequence analysis of TSPAN12 revealed two mutations segregating in five of 11 FEVR families, indicating that mutations in TSPAN12 are a relatively frequent cause of FEVR. Furthermore, we demonstrate the power of targeted next-generation sequencing technology to identify disease genes in linkage intervals.

Collaboration


Dive into the Frans P.M. Cremers's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carel B. Hoyng

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

Rob W.J. Collin

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

L. Ingeborgh van den Born

Netherlands Institute for Neuroscience

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ronald Roepman

Radboud University Nijmegen Medical Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Susanne Roosing

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

Lies H. Hoefsloot

Erasmus University Rotterdam

View shared research outputs
Researchain Logo
Decentralizing Knowledge