Frans Pretorius
Princeton University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Frans Pretorius.
Physical Review Letters | 2005
Frans Pretorius
We describe early success in the evolution of binary black-hole spacetimes with a numerical code based on a generalization of harmonic coordinates. Indications are that with sufficient resolution this scheme is capable of evolving binary systems for enough time to extract information about the orbit, merger, and gravitational waves emitted during the event. As an example we show results from the evolution of a binary composed of two equal mass, nonspinning black holes, through a single plunge orbit, merger, and ringdown. The resultant black hole is estimated to be a Kerr black hole with angular momentum parameter a approximately 0.70. At present, lack of resolution far from the binary prevents an accurate estimate of the energy emitted, though a rough calculation suggests on the order of 5% of the initial rest mass of the system is radiated as gravitational waves during the final orbit and ringdown.
Classical and Quantum Gravity | 2005
Frans Pretorius
A new numerical scheme to solve the Einstein field equations based upon the generalized harmonic decomposition of the Ricci tensor is introduced. The source functions driving the wave equations that define generalized harmonic coordinates are treated as independent functions, and encode the coordinate freedom of solutions. Techniques are discussed to impose particular gauge conditions through a specification of the source functions. A 3D, free evolution, finite difference code implementing this system of equations with a scalar field matter source is described. The second-order-in-space-and-time partial differential equations are discretized directly without the use of first-order auxiliary terms, limiting the number of independent functions to 15—ten metric quantities, four source functions and the scalar field. This also limits the number of constraint equations, which can only be enforced to within truncation error in a numerical free evolution, to four. The coordinate system is compactified to spatial infinity in order to impose physically motivated, constraint-preserving outer boundary conditions. A variant of the cartoon method for efficiently simulating axisymmetric spacetimes with a Cartesian code is described that does not use interpolation, and is easier to incorporate into existing adaptive mesh refinement packages. Preliminary test simulations of vacuum black-hole evolution and black-hole formation via scalar field collapse are described, suggesting that this method may be useful for studying many spacetimes of interest.
Physical Review D | 2016
Nicolas Yunes; Kent Yagi; Frans Pretorius
The gravitational wave observations GW150914 and GW151226 by Advanced LIGO provide the first opportunity to learn about physics in the extreme gravity environment of coalescing binary black holes. The LIGO Scientific Collaboration and the Virgo Collaboration have verified that this observation is consistent with Einstein’s theory of general relativity, constraining the presence of certain parametric anomalies in the signal. This paper expands their analysis to a larger class of anomalies, highlighting the inferences that can be drawn on nonstandard theoretical physics mechanisms that could otherwise have affected the observed signals. We find that these gravitational wave events constrain a plethora of mechanisms associated with the generation and propagation of gravitational waves, including the activation of scalar fields, gravitational leakage into large extra dimensions, the variability of Newton’s constant, the speed of gravity, a modified dispersion relation, gravitational Lorentz violation and the strong equivalence principle. Though other observations limit many of these mechanisms already, GW150914 and GW151226 are unique in that they are direct probes of dynamical strong-field gravity and of gravitational wave propagation. We also show that GW150914 constrains inferred properties of exotic compact object alternatives to Kerr black holes. We argue, however, that the true potential for GW150914 to both rule out exotic objects and constrain physics beyond general relativity is severely limited by the lack of understanding of the coalescence regime in almost all relevant modified gravity theories. This event thus significantly raises the bar that these theories have to pass, both in terms of having a sound theoretical underpinning and reaching the minimal level of being able to solve the equations of motion for binary merger events. We conclude with a discussion of the additional inferences that can be drawn if the lower-confidence observation of an electromagnetic counterpart to GW150914 holds true, or such a coincidence is observed with future events; this would provide dramatic constraints on the speed of gravity and gravitational Lorentz violation.
arXiv: General Relativity and Quantum Cosmology | 2009
Frans Pretorius
The two-body problem in general relativity is reviewed, focusing on the final stages of the coalescence of the black holes as uncovered by recent successes in numerical solution of the field equations.
Physical Review Letters | 2010
Luis Lehner; Frans Pretorius
We describe the behavior of 5-dimensional black strings, subject to the Gregory-Laflamme instability. Beyond the linear level, the evolving strings exhibit a rich dynamics, where at intermediate stages the horizon can be described as a sequence of 3-dimensional spherical black holes joined by black string segments. These segments are themselves subject to a Gregory-Laflamme instability, resulting in a self-similar cascade, where ever-smaller satellite black holes form connected by ever-thinner string segments. This behavior is akin to satellite formation in low-viscosity fluid streams subject to the Rayleigh-Plateau instability. The simulation results imply that the string segments will reach zero radius in finite asymptotic time, whence the classical space-time terminates in a naked singularity. Since no fine-tuning is required to excite the instability, this constitutes a generic violation of cosmic censorship.
Physical Review Letters | 2008
Ulrich Sperhake; Vitor Cardoso; Frans Pretorius; Emanuele Berti; José A. González
We study the head-on collision of two highly boosted equal mass, nonrotating black holes. We determine the waveforms, radiated energies, and mode excitation in the center of mass frame for a variety of boosts. For the first time we are able to compare analytic calculations, black-hole perturbation theory, and strong field, nonlinear numerical calculations for this problem. Extrapolation of our results, which include velocities of up to 0.94c, indicate that in the ultrarelativistic regime about 14+/-3% of the energy is converted into gravitational waves. This gives rise to a luminosity of order 10_(-2)c_(5)/G, the largest known so far in a black-hole merger.
Physical Review D | 2003
Matthew W. Choptuik; Luis Lehner; Ignacio Olabarrieta; Roman J. W. Petryk; Frans Pretorius; Hugo Villegas
Black strings, one class of higher dimensional analogues of black holes, were shown to be unstable to long wavelength perturbations by Gregory and Laflamme in 1992, via a linear analysis. We reexamine the problem through the numerical solution of the full equations of motion, and focus on trying to determine the end state of a perturbed, unstable black string. Our preliminary results show that such a spacetime tends towards a solution resembling a sequence of spherical black holes connected by thin black strings, at least at intermediate times. However, our code fails then, primarily due to large gradients that develop in metric functions, as the coordinate system we use is not well adapted to the nature of the unfolding solution. We are thus unable to determine how close the solution we see is to the final end state, though we do observe rich dynamical behavior of the system in the intermediate stages.
Classical and Quantum Gravity | 2009
B. E. Aylott; John G. Baker; William D. Boggs; Michael Boyle; P. R. Brady; D. A. Brown; Bernd Brügmann; Luisa T. Buchman; A. Buonanno; L. Cadonati; Jordan Camp; Manuela Campanelli; Joan M. Centrella; S. Chatterji; N. Christensen; Tony Chu; Peter Diener; Nils Dorband; Zachariah B. Etienne; Joshua A. Faber; S. Fairhurst; B. Farr; Sebastian Fischetti; G. M. Guidi; L. M. Goggin; Mark Hannam; Frank Herrmann; Ian Hinder; S. Husa; Vicky Kalogera
The Numerical INJection Analysis (NINJA) project is a collaborative effort between members of the numerical relativity and gravitational-wave data analysis communities. The purpose of NINJA is to study the sensitivity of existing gravitational-wave search algorithms using numerically generated waveforms and to foster closer collaboration between the numerical relativity and data analysis communities. We describe the results of the first NINJA analysis which focused on gravitational waveforms from binary black hole coalescence. Ten numerical relativity groups contributed numerical data which were used to generate a set of gravitational-wave signals. These signals were injected into a simulated data set, designed to mimic the response of the initial LIGO and Virgo gravitational-wave detectors. Nine groups analysed this data using search and parameter-estimation pipelines. Matched filter algorithms, un-modelled-burst searches and Bayesian parameter estimation and model-selection algorithms were applied to the data. We report the efficiency of these search methods in detecting the numerical waveforms and measuring their parameters. We describe preliminary comparisons between the different search methods and suggest improvements for future NINJA analyses.
Physical Review D | 2008
Y. Pan; A. Buonanno; John G. Baker; Joan M. Centrella; Bernard J. Kelly; Sean T. McWilliams; Frans Pretorius; James R. van Meter
We compare waveforms obtained by numerically evolving nonspinning binary black holes to postNewtonian (PN) template families currently used in the search for gravitational waves by groundbased detectors. We find that the time-domain 3.5PN template family, which includes the inspiral phase, has fitting factors (FFs) ≥ 0.96 for binary systems with total mass M = 10–20M⊙. The timedomain 3.5PN effective-one-body template family, which includes the inspiral, merger and ring-down phases, gives satisfactory signal-matching performance with FFs ≥ 0.96 for binary systems with total mass M = 10–120M⊙. If we introduce a cutoff frequency properly adjusted to the final black-hole ring-down frequency, we find that the frequency-domain stationary-phase-approximated template family at 3.5PN order has FFs ≥ 0.96 for binary systems with total mass M = 10–20M⊙. However, to obtain high matching performances for larger binary masses, we need to either extend this family to unphysical regions of the parameter space or introduce a 4PN order coefficient in the frequencydomain GW phase. Finally, we find that the phenomenological Buonanno-Chen-Vallisneri family has FFs ≥ 0.97 with total mass M = 10–120M⊙. The main analyses use the noise spectral-density of LIGO, but several tests are extended to VIRGO and advanced LIGO noise-spectral densities.
Physical Review Letters | 2009
Ulrich Sperhake; Vitor Cardoso; Frans Pretorius; Emanuele Berti; Tanja Hinderer; Nicolas Yunes
We study the collision of two highly boosted equal-mass, nonrotating black holes with generic impact parameter. We find such systems to exhibit zoom-whirl behavior when fine-tuning the impact parameter. Near the threshold of immediate merger the remnant black-hole Kerr parameter can be near maximal (a/M greater, similar 0.95) and the radiated energy can be as large as 35 +/- 5% of the center-of-mass energy.