Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Franz-Christoph Bange is active.

Publication


Featured researches published by Franz-Christoph Bange.


Molecular Microbiology | 2000

Anaerobic nitrate reductase (narGHJI) activity of Mycobacterium bovis BCG in vitro and its contribution to virulence in immunodeficient mice

Isabel Weber; Christian Fritz; Silvia Ruttkowski; Andreas Kreft; Franz-Christoph Bange

Mycobacterium tuberculosis and Mycobacterium bovis cause tuberculosis, which is responsible for the deaths of more people each year than any other bacterial infectious disease. Disseminated disease with Mycobacterium bovis BCG, the only currently available vaccine against tuberculosis, occurs in immunocompetent and immunodeficient individuals. Although mycobacteria are obligate aerobes, they are thought to face an anaerobic environment during infection, notably inside abscesses and granulomas. The purpose of this study was to define a metabolic pathway that could allow mycobacteria to exist under these conditions. Recently, the complete genome of M. tuberculosis has been sequenced, and genes homologous to an anaerobic nitrate reductase (narGHJI), an enzyme allowing nitrate respiration when oxygen is absent, were found. Here, we show that the narGHJI cluster of M. tuberculosis is functional as it conferred anaerobic nitrate reductase activity to Mycobacterium smegmatis. A narG mutant of M. bovis BCG was generated by targeted gene deletion. The mutant lacked the ability to reduce nitrate under anaerobic conditions. Both mutant and M. bovis BCG wild type grew equally well under aerobic conditions in vitro. Histology of immunodeficient mice (SCID) infected with M. bovis BCG wild type revealed large granulomas teeming with acid‐fast bacilli; all mice showed signs of clinical disease after 50 days and succumbed after 80 days. In contrast, mice infected with the mutant had smaller granulomas containing fewer bacteria; these mice showed no signs of clinical disease after more than 200 days. Thus, it seems that nitrate respiration contributes significantly to virulence of M. bovis BCG in immunodeficient SCID mice.


Journal of Clinical Microbiology | 2002

Rapid-Cycle PCR and Fluorimetry for Detection of Mycobacteria

Jacqueline Lachnik; Birgit Ackermann; Antje Bohrssen; Silvia Maass; Catharina Diephaus; Axel Puncken; Marion Stermann; Franz-Christoph Bange

ABSTRACT In this study we used LightCycler PCR amplification and product detection by fluorescence resonance energy transfer probes to identify mycobacteria and differentiate between Mycobacterium tuberculosis complex, Mycobacterium avium, and other nontuberculous mycobacteria. Targeting the 16S rRNA gene, three different probes specific for mycobacteria, M. tuberculosis complex, and M. avium were constructed. As few as five genome copies of target nucleic acid were detected by the probes, illustrating the high sensitivity of the system. All 33 mycobacterial species tested but none of the closely related actinomycetes and other bacteria produced a specific fluorescence signal. A specificity of 100% was also demonstrated for the M. tuberculosis complex-specific probe and the M. avium-specific probe. Within 45 min, the LightCycler method correctly detected mycobacteria and specifically identified M. tuberculosis complex and M. avium without any post-PCR sample manipulation. In view of future clinical studies, we also constructed and tested an internal control which could be used to assure successful amplification and detection of mycobacteria. Monitoring of PCR inhibition will be essential for evaluation of this system for direct detection of mycobacteria in clinical specimens. Finally, we tested our system on sputum seeded with mycobacteria and were able to detect as few as 10 organisms. At present, this system is the fastest available method for identification and differentiation of mycobacteria from culture-positive specimens and offers an excellent alternative to previously established nucleic acid amplification-based techniques for the diagnostic mycobacterial laboratory.


Infection and Immunity | 2002

Dependence of Mycobacterium bovis BCG on Anaerobic Nitrate Reductase for Persistence Is Tissue Specific

Christian Fritz; Silvia Maass; Andreas Kreft; Franz-Christoph Bange

ABSTRACT Mycobacterium bovis BCG, the only presently available vaccine against tuberculosis, was obtained from virulent M. bovis after serial passages in vitro. The vaccine strain retained at least some of its original virulence, as it persists in immune-competent hosts and occasionally may cause fatal disease in immune-deficient hosts. Mycobacterial persistence in vivo is thought to depend on anaerobic metabolism, an apparent paradox since all mycobacteria are obligate aerobes. Here we report that M. bovis BCG lacking anaerobic nitrate reductase (NarGHJI), an enzyme essential for nitrate respiration, failed to persist in the lungs, liver, and kidneys of immune-competent (BALB/c) mice. In immune-deficient (SCID) mice, however, bacilli caused chronic infection despite disruption of narG, even if growth of the mutant was severely impaired in lungs, liver, and kidneys. Persistence and growth of BCG in the spleens of either mouse strain appeared largely unaffected by lack of anaerobic nitrate reductase, indicating that the role of the enzyme in pathogenesis is tissue specific. These data suggest first that anaerobic nitrate reduction is essential for metabolism of M. bovis BCG in immune-competent but not immune-deficient mice and second that its role in mycobacterial disease is tissue specific, both of which are observations with important implications for pathogenesis of mycobacteria and vaccine development.


Microbiology | 2009

The roles of the nitrate reductase NarGHJI, the nitrite reductase NirBD and the response regulator GlnR in nitrate assimilation of Mycobacterium tuberculosis

Sven Malm; Yvonne Tiffert; Julia C. Micklinghoff; Sonja Schultze; Insa Joost; Isabel Weber; Sarah A. Horst; Birgit Ackermann; Mascha Schmidt; Wolfgang Wohlleben; Stefan Ehlers; Robert Geffers; Jens Reuther; Franz-Christoph Bange

Mycobacterium tuberculosis can utilize various nutrients including nitrate as a source of nitrogen. Assimilation of nitrate requires the reduction of nitrate via nitrite to ammonium, which is then incorporated into metabolic pathways. This study was undertaken to define the molecular mechanism of nitrate assimilation in M. tuberculosis. Homologues to a narGHJI-encoded nitrate reductase and a nirBD-encoded nitrite reductase have been found on the chromosome of M. tuberculosis. Previous studies have implied a role for NarGHJI in nitrate respiration rather than nitrate assimilation. Here, we show that a narG mutant of M. tuberculosis failed to grow on nitrate. A nirB mutant of M. tuberculosis failed to grow on both nitrate and nitrite. Mutant strains of Mycobacterium smegmatis mc(2)155 that are unable to grow on nitrate were isolated. The mutants were rescued by screening a cosmid library from M. tuberculosis, and a gene with homology to the response regulator gene glnR of Streptomyces coelicolor was identified. A DeltaglnR mutant of M. tuberculosis was generated, which also failed to grow on nitrate, but regained its ability to utilize nitrate when nirBD was expressed from a plasmid, suggesting a role of GlnR in regulating nirBD expression. A specific binding site for GlnR within the nirB promoter was identified and confirmed by electrophoretic mobility shift assay using purified recombinant GlnR. Semiquantitative reverse transcription PCR, as well as microarray analysis, demonstrated upregulation of nirBD expression in response to GlnR under nitrogen-limiting conditions. In summary, we conclude that NarGHJI and NirBD of M. tuberculosis mediate the assimilatory reduction of nitrate and nitrite, respectively, and that GlnR acts as a transcriptional activator of nirBD.


Clinical Infectious Diseases | 2001

Lack of Transmission of Mycobacterium abscessus among Patients with Cystic Fibrosis Attending a Single Clinic

Franz-Christoph Bange; Barbara A. Brown; Christina Smaczny; Richard J. Wallace; Erik C. Böttger

We retrospectively analyzed 1062 respiratory specimens from 214 patients with cystic fibrosis, of whom 5 patients had 36 cultures positive for M. abscessus. Results of molecular typing demonstrated that each of these 5 patients carried a single unique strain (genotype), which suggests that it may not be necessary to segregate patients with CF who are colonized or infected with M. abscessus from those who are not.


BMC Infectious Diseases | 2013

Burden and trends of hospitalisations associated with pulmonary non-tuberculous mycobacterial infections in Germany, 2005-2011.

Felix C. Ringshausen; Rosa-Marie Apel; Franz-Christoph Bange; Andrés de Roux; Mathias W. Pletz; Jessica Rademacher; Hendrik Suhling; Dirk Wagner; Tobias Welte

BackgroundRepresentative population-based data on the epidemiology of pulmonary non-tuberculous mycobacterial (PNTM) infections in Europe are limited. However, these data are needed in order to optimise patient care and to facilitate the allocation of healthcare resources. The aim of the present study was to investigate the current burden and the trends of PNTM infection-associated hospitalisations in Germany.MethodsInternational Classification of Diseases, 10th revision (ICD-10) discharge diagnosis codes were extracted from the official nationwide diagnosis-related groups (DRG) hospital statistics in order to identify PNTM infection-associated hospitalisations (ICD-10 code A31.0) between 2005 and 2011. Poisson log-linear regression analysis was used to assess the significance of trends.ResultsOverall, 5,959 records with PNTM infection as any hospital discharge diagnosis were extracted from more than 125 million hospitalisations. The average annual age-adjusted rate was 0.91 hospitalisations per 100,000 population. Hospitalisation rates increased during the study period for both males and females, with the highest rate of 3.0 hospitalisations per 100,000 population among elderly men, but the most pronounced average increase of 6.4%/year among females, particularly those of young and middle age, and hospitalisations associated with cystic fibrosis. Overall, chronic obstructive pulmonary disease (COPD) was the most frequent PNTM infection-associated condition in 28.9% of hospitalisations and also showed a significant average annual increase of 4.8%.ConclusionsThe prevalence of PNTM infection-associated hospitalisations is steadily increasing in Germany. COPD is currently the most important associated condition. Our population-based study provides evidence of a changing epidemiology of PNTM infections and highlights emerging clinical implications.


Journal of Bacteriology | 2009

Role of the Transcriptional Regulator RamB (Rv0465c) in the Control of the Glyoxylate Cycle in Mycobacterium tuberculosis

Julia C. Micklinghoff; Katrin J. Breitinger; Mascha Schmidt; Robert Geffers; Bernhard J. Eikmanns; Franz-Christoph Bange

Mycobacterium tuberculosis generally is assumed to depend on lipids as a major carbon and energy source when persisting within the host. The utilization of fatty acids requires a functional glyoxylate cycle with the key enzymes isocitrate lyase (Icl) and malate synthase. The open reading frame Rv0465c of M. tuberculosis H37Rv encodes a protein with significant sequence similarity to the transcriptional regulator RamB, which in Corynebacterium glutamicum controls the expression of several genes involved in acetate metabolism, i.e., those encoding enzymes of acetate activation and the glyoxylate cycle. We show here that the M. tuberculosis Rv0465c protein can functionally complement RamB in C. glutamicum and that it binds to the promoter regions of M. tuberculosis icl1 and Rv0465c. Construction and subsequent transcriptional and enzymatic analysis of a defined Rv0465c deletion mutant in M. tuberculosis revealed that the Rv0465c protein, now designated RamB, represses icl1 expression during growth with glucose and negatively autoregulates the expression of its own operon. Whole-genome microarray analysis of the M. tuberculosis ramB (ramB(MT)) mutant and the wild type furthermore showed that apart from icl1 and the ramB(MT) operon, the expression of all other M. tuberculosis genes involved in acetate metabolism remain unchanged in the mutant. Thus, RamB(MT) has a more specific regulatory function as RamB from C. glutamicum and is confined to expression control of icl1 and the ramB(MT) operon.


Journal of Clinical Microbiology | 2003

Polymorphic Nucleotide within the Promoter of Nitrate Reductase (NarGHJI) Is Specific for Mycobacterium tuberculosis

Marion Stermann; Antje Bohrssen; Catharina Diephaus; Silvia Maass; Franz-Christoph Bange

ABSTRACT Mycobacterium tuberculosis rapidly reduces nitrate, leading to the accumulation of nitrite. This characteristic served for the past 40 years to differentiate M. tuberculosis from other members of the Mycobacterium tuberculosis complex (MTBC), such as Mycobacterium bovis (non-BCG [referred to here as simply “M. bovis”]), Mycobacterium bovis BCG, Mycobacterium africanum, or Mycobacterium microti. Here, a narG deletion in M. tuberculosis showed that rapid nitrite accumulation of M. tuberculosis is mediated by narGHJI. Analysis of narG mutants of M. bovis and M. bovis BCG showed that, as in M. tuberculosis, nitrite accumulation was mediated by narGHJI, and no other nitrate reductase was involved. However, in contrast to M. tuberculosis, accumulation was delayed for several days. Comparison of the narGHJI promoter revealed that, at nucleotide −215 prior to the start codon of narG, M. tuberculosis carried a thymine residue, whereas the bovine mycobacteria carried a cytosine residue. Using LightCycler technology we examined 62 strains of M. tuberculosis, M. bovis, M. bovis BCG, M. microti, and M. africanum and demonstrated that this single nucleotide polymorphism was specific for M. tuberculosis. For further differentiation within the MTBC, we included, by using LightCycler technology, the previously described analysis of oxyR polymorphism, which is specific for the bovine mycobacteria, and the RD1 polymorphism, which is specific for M. bovis BCG. Based on these results, we suggest a LightCycler format for rapid and unambiguous diagnosis of M. tuberculosis, M. bovis, and M. bovis BCG.


Journal of Bacteriology | 2010

Thiol Peroxidase Protects Salmonella enterica from Hydrogen Peroxide Stress In Vitro and Facilitates Intracellular Growth

Sarah A. Horst; Timo Jaeger; Luisa A. Denkel; Syed Fazle Rouf; Mikael Rhen; Franz-Christoph Bange

At present, Salmonella is considered to express two peroxiredoxin-type peroxidases, TsaA and AhpC. Here we describe an additional peroxiredoxin, Tpx, in Salmonella enterica and show that a single tpx mutant is susceptible to exogenous hydrogen peroxide (H(2)O(2)), that it has a reduced capacity to degrade H(2)O(2) compared to the ahpCF and tsaA mutants, and that its growth is affected in activated macrophages. These results suggest that Tpx contributes significantly to the sophisticated defense system that the pathogen has evolved to survive oxidative stress.


PLOS ONE | 2011

Methionine Sulfoxide Reductases Are Essential for Virulence of Salmonella Typhimurium

Luisa A. Denkel; Sarah A. Horst; Syed Fazle Rouf; Vera Kitowski; Oliver M. Böhm; Mikael Rhen; Timo Jäger; Franz-Christoph Bange

Production of reactive oxygen species represents a fundamental innate defense against microbes in a diversity of host organisms. Oxidative stress, amongst others, converts peptidyl and free methionine to a mixture of methionine-S- (Met-S-SO) and methionine-R-sulfoxides (Met-R-SO). To cope with such oxidative damage, methionine sulfoxide reductases MsrA and MsrB are known to reduce MetSOs, the former being specific for the S-form and the latter being specific for the R-form. However, at present the role of methionine sulfoxide reductases in the pathogenesis of intracellular bacterial pathogens has not been fully detailed. Here we show that deletion of msrA in the facultative intracellular pathogen Salmonella (S.) enterica serovar Typhimurium increased susceptibility to exogenous H2O2, and reduced bacterial replication inside activated macrophages, and in mice. In contrast, a ΔmsrB mutant showed the wild type phenotype. Recombinant MsrA was active against free and peptidyl Met-S-SO, whereas recombinant MsrB was only weakly active and specific for peptidyl Met-R-SO. This raised the question of whether an additional Met-R-SO reductase could play a role in the oxidative stress response of S. Typhimurium. MsrC is a methionine sulfoxide reductase previously shown to be specific for free Met-R-SO in Escherichia (E.) coli. We tested a ΔmsrC single mutant and a ΔmsrBΔmsrC double mutant under various stress conditions, and found that MsrC is essential for survival of S. Typhimurium following exposure to H2O2, as well as for growth in macrophages, and in mice. Hence, this study demonstrates that all three methionine sulfoxide reductases, MsrA, MsrB and MsrC, facilitate growth of a canonical intracellular pathogen during infection. Interestingly MsrC is specific for the repair of free methionine sulfoxide, pointing to an important role of this pathway in the oxidative stress response of Salmonella Typhimurium.

Collaboration


Dive into the Franz-Christoph Bange's collaboration.

Top Co-Authors

Avatar

Tobias Welte

Hannover Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert Geffers

Braunschweig University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ella Ebadi

Hannover Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Claas Baier

Hannover Medical School

View shared research outputs
Researchain Logo
Decentralizing Knowledge