Franz Fadler
Siemens
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Franz Fadler.
Medical Physics | 2009
Jonathan S. Maltz; Frank Sprenger; Jens Fuerst; Ajay Paidi; Franz Fadler; Ali Bani-Hashemi
The authors present the design and simulation of an imaging system that employs a compact multiple source x-ray tube to produce a tomosynthesisimage from a set of projections obtained at a single tube position. The electron sources within the tube are realized using cold cathodecarbon nanotube technology. The primary intended application is tomosynthesis-based 3D image guidance during external beam radiation therapy. The tube, which is attached to the gantry of a medicallinear accelerator(linac) immediately below the multileaf collimator, operates within the voltage range of 80 – 160 kVp and contains a total of 52 sources that are arranged in a rectilinear array. This configuration allows for the acquisition of tomographic projections from multiple angles without any need to rotate the linac gantry. The x-ray images are captured by the same amorphous silicon flat panel detector employed for portal imaging on contemporary linacs. The field of view (FOV) of the system corresponds to that part of the volume that is sampled by rays from all sources. The present tube and detector configuration provides an 8 × 8 cm 2 FOV in the plane of the linac isocenter when the 40.96 × 40.96 cm 2 imaging detector is placed 40 cm from the isocenter. Since this tomosynthesis application utilizes the extremities of the detector to record image detail relating to structures near the isocenter, simultaneous treatment and imaging is possible for most clinical cases, where the treated target is a small region close to the linac isocenter. The tomosynthesisimages are reconstructed using the simultaneous iterative reconstruction technique, which is accelerated using a graphic processing unit. The authors present details of the system design as well as simulated performance of the imaging system based on reprojections of patient CTimages.
Medical Physics | 2009
Jonathan S. Maltz; Frank Sprenger; Jens Fuerst; Ajay Paidi; Franz Fadler; Ali Bani-Hashemi
We present the design and simulation of an imaging system that employs a compact multiple source x-ray tube to produce a tomosynthesis image from a set of projections obtained at a single tube position. The electron sources within the tube are realized using cold cathode carbon nanotube technology. The primary intended application is tomosynthesis-based 3D image guidance during external beam radiation therapy. The tube, which is attached to the gantry of a medical linear accelerator (linac) immediately below the multileaf collimator, operates within the voltage range of 80-160 kVp and contains a total of 52 sources that are arranged in a rectilinear array. This configuration allows for the acquisition of tomographic projections from multiple angles without any need to rotate the linac gantry. The x-ray images are captured by the same amorphous silicon flat panel detector employed for portal imaging on contemportary linacs. The field-of-view (FOV) of the system corresponds to that part of the volume that is sampled by rays from all sources. The present tube and detector configuration provides an 8 cm×8 cm FOV in the plane of the linac isocenter when the 40.96 cm×40.96 cm imaging detector is placed 40 cm from the isocenter. Since this tomosynthesis application utilizes the extremities of the detector to record image detail relating to structures near the isocenter, simultaneous treatment and imaging is possible for most clinical cases, where the treated target is a small region close to the linac isocenter. The tomosynthesis images are reconstructed using the simultaneous iterative reconstruction technique (SART), which is accelerated using a graphics processing unit (GPU). We present details of the system design as well as simulated performance of the imaging system based on reprojections of patient CT images.
Archive | 2003
Franz Fadler; Stefan Leidenberger
Archive | 2009
Franz Fadler; Paul Weidner
Archive | 2004
Franz Fadler; Udo Heinze; Martin Vierbücher
Archive | 2009
Franz Fadler; Norbert Herrmann; Manfred Sechser
Archive | 2010
Franz Fadler
Archive | 2011
Franz Fadler
Archive | 2010
Franz Fadler; Norbert Herrmann; Manfred Sechser
Archive | 2004
Franz Fadler; Udo Heinze