Franz J. Weissing
University of Groningen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Franz J. Weissing.
Nature | 2007
Max Wolf; G. Sander van Doorn; Olof Leimar; Franz J. Weissing
In recent years evidence has been accumulating that personalities are not only found in humans but also in a wide range of other animal species. Individuals differ consistently in their behavioural tendencies and the behaviour in one context is correlated with the behaviour in multiple other contexts. From an adaptive perspective, the evolution of animal personalities is still a mystery, because a more flexible structure of behaviour should provide a selective advantage. Accordingly, many researchers view personalities as resulting from constraints imposed by the architecture of behaviour (but see ref. 12). In contrast, we show here that animal personalities can be given an adaptive explanation. Our argument is based on the insight that the trade-off between current and future reproduction often results in polymorphic populations in which some individuals put more emphasis on future fitness returns than others. Life-history theory predicts that such differences in fitness expectations should result in systematic differences in risk-taking behaviour. Individuals with high future expectations (who have much to lose) should be more risk-averse than individuals with low expectations. This applies to all kinds of risky situations, so individuals should consistently differ in their behaviour. By means of an evolutionary model we demonstrate that this basic principle results in the evolution of animal personalities. It simultaneously explains the coexistence of behavioural types, the consistency of behaviour through time and the structure of behavioural correlations across contexts. Moreover, it explains the common finding that explorative behaviour and risk-related traits like boldness and aggressiveness are common characteristics of animal personalities.
Nature | 1999
Jef Huisman; Franz J. Weissing
Biodiversity has both fascinated and puzzled biologists. In aquatic ecosystems, the biodiversity puzzle is particularly troublesome, and known as the ‘paradox of the plankton’. Competition theory predicts that, at equilibrium, the number of coexisting species cannot exceed the number of limiting resources. For phytoplankton, only a few resources are potentially limiting: nitrogen, phosphorus, silicon, iron, light, inorganic carbon, and sometimes a few trace metals or vitamins. However, in natural waters dozens of phytoplankton species coexist. Here we offer a solution to the plankton paradox. First, we show that resource competition models can generate oscillations and chaos when species compete for three or more resources. Second, we show that these oscillations and chaotic fluctuations in species abundances allow the coexistence of many species on a handful of resources. This model of planktonic biodiversity may be broadly applicable to the biodiversity of many ecosystems.
Trends in Ecology and Evolution | 2012
Max Wolf; Franz J. Weissing
Personality differences are a widespread phenomenon throughout the animal kingdom. Past research has focused on the characterization of such differences and a quest for their proximate and ultimate causation. However, the consequences of these differences for ecology and evolution received much less attention. Here, we strive to fill this gap by providing a comprehensive inventory of the potential implications of personality differences, ranging from population growth and persistence to species interactions and community dynamics, and covering issues such as social evolution, the speed of evolution, evolvability, and speciation. The emerging picture strongly suggests that personality differences matter for ecological and evolutionary processes (and their interaction) and, thus, should be considered a key dimension of ecologically and evolutionarily relevant intraspecific variation.
Proceedings of the National Academy of Sciences of the United States of America | 2008
Max Wolf; G. Sander van Doorn; Franz J. Weissing
In many animal species, individuals differ consistently in suites of correlated behaviors, comparable with human personalities. Increasing evidence suggests that one of the fundamental factors structuring personality differences is the responsiveness of individuals to environmental stimuli. Whereas some individuals tend to be highly responsive to such stimuli, others are unresponsive and show routine-like behaviors. Much research has focused on the proximate causes of these differences but little is known about their evolutionary origin. Here, we provide an evolutionary explanation. We develop a simple but general evolutionary model that is based on two key ingredients. First, the benefits of responsiveness are frequency-dependent; that is, being responsive is advantageous when rare but disadvantageous when common. This explains why responsive and unresponsive individuals can coexist within a population. Second, positive-feedback mechanisms reduce the costs of responsiveness; that is, responsiveness is less costly for individuals that have been responsive before. This explains why individuals differ consistently in their responsiveness, across contexts and over time. As a result, natural selection gives rise to stable individual differences in responsiveness. Whereas some individuals respond to environmental stimuli in all kinds of contexts, others consistently neglect such stimuli. Interestingly, such differences induce correlations among all kinds of other traits (e.g., boldness and aggressiveness), thus providing an explanation for environment-specific behavioral syndromes.
Trends in Ecology and Evolution | 1997
van de Johan Koppel; Max Rietkerk; Franz J. Weissing
It has long been recognized that alternative vegetation states may occur in terrestrial grazing systems. This phenomenon may be of great importance as small environmental fluctuations may lead to relatively sudden and irreversible jumps between vegetation states. Early theoretical studies emphasized saturation of herbivore feeding to explain multiple stable states and catastrophic behaviour. Recent studies on semi-arid grasslands and arctic salt marshes, however, relate catastrophic events in these systems to plant-soil interactions.
Philosophical Transactions of the Royal Society B | 2010
Max Wolf; Franz J. Weissing
We develop a conceptual framework for the understanding of animal personalities in terms of adaptive evolution. We focus on two basic questions. First, why do behavioural types exhibit limited behavioural plasticity, that is, behavioural correlations both across contexts and over time? Second, how can multiple behavioural types coexist within a single population? We emphasize differences in ‘state’ among individuals in combination with state-dependent behaviour. Some states are inherently stable and individual differences in such states can explain stable differences in suites of behaviour if it is adaptive to make behaviour in various contexts dependent on such states. Behavioural stability and cross-context correlations in behaviour are more difficult to explain if individual states are potentially more variable. In such cases stable personalities can result from state-dependent behaviour if state and behaviour mutually reinforce each other by feedback mechanisms. We discuss various evolutionary mechanisms for the maintenance of variation (in states and/or behaviour), including frequency-dependent selection, spatial variation with incomplete matching between habitat and phenotype, bet-hedging in a temporally fluctuating environment, and non-equilibrium dynamics. Although state differences are important, we also discuss how social conventions and social signalling can give rise to adaptive personality differences in the absence of state differences.
Trends in Ecology and Evolution | 2012
Roger K. Butlin; Allan Debelle; Claudius Kerth; Rhonda R. Snook; Leo W. Beukeboom; Ruth F. Castillo Cajas; Wenwen Diao; Martine E. Maan; Silvia Paolucci; Franz J. Weissing; Louis Jacobus Mgn Van De Zande; Anneli Hoikkala; Elzemiek Geuverink; Jackson H. Jennings; Maaria Kankare; K. Emily Knott; Venera I. Tyukmaeva; Christos Zoumadakis; Michael G. Ritchie; Daniel Barker; Elina Immonen; Mark Kirkpatrick; Mohamed A. F. Noor; Constantino Macías Garcia; Thomas Schmitt; Menno Schilthuizen
Speciation has been a major focus of evolutionary biology research in recent years, with many important advances. However, some of the traditional organising principles of the subject area no longer provide a satisfactory framework, such as the classification of speciation mechanisms by geographical context into allopatric, parapatric and sympatry classes. Therefore, we have asked where speciation research should be directed in the coming years. Here, we present a distillation of questions about the mechanisms of speciation, the genetic basis of speciation and the relationship between speciation and diversity. Our list of topics is not exhaustive; rather we aim to promote discussion on research priorities and on the common themes that underlie disparate speciation processes.
Science | 2009
G. Sander van Doorn; Pim Edelaar; Franz J. Weissing
Local Selection of Magic Traits Ecological interactions can favor specialization, and sexual selection can induce reproductive isolation; however, these processes are insufficient by themselves to create new species. They must act in concert and on the same set of genes. Van Doorn et al. (p. 1704, published online 26 November; see the Perspective by Mank) present a theoretical model that shows that within a larger population the evolution of mating preferences will favor sexual ornaments that indicate the degree of adaptation to the local ecological conditions, for example, the abundant song of a male bird that can obtain food easily because it has the right bill size for the seeds in that locale. Once mate choice evolves on the basis of a signal of local adaptation, natural and sexual selection will mutually enforce each other, ultimately leading to speciation. Modeling demonstrates how speciation occurs due to sexual selection. Ecological speciation is considered an adaptive response to selection for local adaptation. However, besides suitable ecological conditions, the process requires assortative mating to protect the nascent species from homogenization by gene flow. By means of a simple model, we demonstrate that disruptive ecological selection favors the evolution of sexual preferences for ornaments that signal local adaptation. Such preferences induce assortative mating with respect to ecological characters and enhance the strength of disruptive selection. Natural and sexual selection thus work in concert to achieve local adaptation and reproductive isolation, even in the presence of substantial gene flow. The resulting speciation process ensues without the divergence of mating preferences, avoiding problems that have plagued previous models of speciation by sexual selection.
The American Naturalist | 2001
Jef Huisman; Franz J. Weissing
One of the central goals of ecology is to predict the distribution and abundance of organisms. Here, we show that, in ecosystems of high biodiversity, the outcome of multispecies competition can be fundamentally unpredictable. We consider a competition model widely applied in phytoplankton ecology and plant ecology in which multiple species compete for three resources. We show that this competition model may have several alternative outcomes, that the dynamics leading to these alternative outcomes may exhibit transient chaos, and that the basins of attraction of these alternative outcomes may have an intermingled fractal geometry. As a consequence of this fractal geometry, it is impossible to predict the winners of multispecies competition in advance.
Science | 2011
Monique de Jager; Franz J. Weissing; P.M.J. Herman; Bart A. Nolet; Johan van de Koppel
Animals’ movements may not only respond to the environment, but may also shape it, and thus affect fitness. Ecological theory predicts that animal movement is shaped by its efficiency of resource acquisition. Focusing solely on efficiency, however, ignores the fact that animal activity can affect resource availability and distribution. Here, we show that feedback between individual behavior and environmental complexity can explain movement strategies in mussels. Specifically, experiments show that mussels use a Lévy walk during the formation of spatially patterned beds, and models reveal that this Lévy movement accelerates pattern formation. The emergent patterning in mussel beds, in turn, improves individual fitness. These results suggest that Lévy walks evolved as a result of the selective advantage conferred by autonomously generated, emergent spatial patterns in mussel beds. Our results emphasize that an interaction between individual selection and habitat complexity shapes animal movement in natural systems.