Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Franziska Magdalena Konrad is active.

Publication


Featured researches published by Franziska Magdalena Konrad.


Mediators of Inflammation | 2012

CXCR2 in Acute Lung Injury

Franziska Magdalena Konrad; Jörg Reutershan

In pulmonary inflammation, recruitment of circulating polymorphonuclear leukocytes is essential for host defense and initiates the following specific immune response. One pathological hallmark of acute lung injury and acute respiratory distress syndrome is the uncontrolled transmigration of neutrophils into the lung interstitium and alveolar space. Thereby, the extravasation of leukocytes from the vascular system into the tissue is induced by chemokines that are released from the site of inflammation. The most relevant chemokine receptors of neutrophils are CXC chemokine receptor (CXCR) 1 and CXCR2. CXCR2 is of particular interest since several studies implicate a pivotal role of this receptor in development and promotion of numerous inflammatory disorders. CXCR2 gets activated by ELR+ chemokines, including MIP-2, KC (rodents) and IL-8 (human). Since multiple ELR+ CXC chemokines act on both receptors—CXCR1 and CXCR2—a pharmacologic agent blocking both receptors seems to be advantageous. So far, several CXCR1/2 antagonists have been developed and have been tested successfully in experimental studies. A newly designed CXCR1 and CXCR2 antagonist can be orally administered and was for the first time found efficient in humans. This review highlights the role of CXCR2 in acute lung injury and discusses its potential as a therapeutic target.


Mucosal Immunology | 2016

Tissue heme oxygenase-1 exerts anti-inflammatory effects on LPS-induced pulmonary inflammation

Franziska Magdalena Konrad; Urs Knausberg; R. Höne; Kristian-Christos Ngamsri; Jörg Reutershan

Heme oxygenase-1 (HO-1) has been shown to display anti-inflammatory properties in models of acute pulmonary inflammation. For the first time, we investigated the role of leukocytic HO-1 using a model of HO-1(flox/flox) mice lacking leukocytic HO-1 that were subjected to lipopolysaccharide (LPS)-induced acute pulmonary inflammation. Immunohistology and flow cytometry demonstrated that activation of HO-1 using hemin decreased migration of polymorphonuclear leukocytes (PMNs) to the lung interstitium and bronchoalveolar lavage (BAL) in the wild-type and, surprisingly, also in HO-1(flox/flox) mice, emphasizing the anti-inflammatory potential of nonmyeloid HO-1. Nevertheless, hemin reduced the CXCL1, CXCL2/3, tumor necrosis factor-α (TNFα), and interleukin 6 (IL6) levels in both animal strains. Microvascular permeability was attenuated by hemin in wild-type and HO-1(flox/flox) mice, indicating a crucial role of non-myeloid HO-1 in endothelial integrity. The determination of the activity of HO-1 in mouse lungs revealed no compensatory increase in the HO-1(flox/flox) mice. Topical administration of hemin via inhalation reduced the dose required to attenuate PMN migration and microvascular permeability by a factor of 40, emphasizing its clinical potential. In addition, HO-1 stimulation was protective against pulmonary inflammation when initiated after the inflammatory stimulus. In conclusion, nonmyeloid HO-1 is crucial for the anti-inflammatory effect of this enzyme on PMN migration to different compartments of the lung and on microvascular permeability.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2012

Adenosine receptor A2b on hematopoietic cells mediates LPS-induced migration of PMNs into the lung interstitium

Franziska Magdalena Konrad; Esther Witte; Irene Vollmer; Stefanie Stark; Jörg Reutershan

Uncontrolled transmigration of polymorphonuclear leukocytes (PMNs) into the different compartments of the lungs (intravascular, interstitial, alveolar) is a critical event in the early stage of acute lung injury and acute respiratory distress syndrome. Adenosine receptor A(2b) is highly expressed in the inflamed lungs and has been suggested to mediate cell trafficking. In a murine model of LPS-induced lung inflammation, we investigated the role of A(2b) on migration of PMNs into the different compartments of the lung. In A(2b)(-/-) mice, LPS-induced accumulation of PMNs was significantly higher in the interstitium, but not in the alveolar space. In addition, pulmonary clearance of PMNs was delayed in A(2b)(-/-) mice. Using chimeric mice, we identified A(2b) on hematopoietic cells as crucial for PMN migration. A(2b) did not affect the release of relevant chemokines into the alveolar space. LPS-induced microvascular permeability was under the control of A(2b) on both hematopoietic and nonhematopoietic cells. Activation of A(2b) on endothelial cells also reduced formation of LPS-induced stress fibers, highlighting its role for endothelial integrity. A specific A(2b) agonist (BAY 60-6583) was effective in decreasing PMN migration into the lung interstitium and microvascular permeability. In addition, in vitro transmigration of human PMNs through a layer of human endothelial or epithelial cells was A(2b) dependent. Activation of A(2b) on human PMNs reduced oxidative burst activity. Together, our results demonstrate anti-inflammatory effects of A(2b) on two major characteristics of acute lung injury, with a distinct role of hematopoietic A(2b) for cell trafficking and endothelial A(2b) for microvascular permeability.


Journal of Immunology | 2013

Gαi2 Is the Essential Gαi Protein in Immune Complex–Induced Lung Disease

Kristina Wiege; Syed R. Ali; Britta Gewecke; Ana Novakovic; Franziska Magdalena Konrad; Katja Pexa; Sandra Beer-Hammer; Jörg Reutershan; Roland P. Piekorz; Reinhold E. Schmidt; Bernd Nürnberg; J. Engelbert Gessner

Heterotrimeric G proteins of the Gαi family have been implicated in signaling pathways regulating cell migration in immune diseases. The Gαi-protein–coupled C5a receptor is a critical regulator of IgG FcR function in experimental models of immune complex (IC)–induced inflammation. By using mice deficient for Gαi2 or Gαi3, we show that Gαi2 is necessary for neutrophil influx in skin and lung Arthus reactions and agonist-induced neutrophilia in the peritoneum, whereas Gαi3 plays a less critical but variable role. Detailed analyses of the pulmonary IC-induced inflammatory response revealed several shared functions of Gαi2 and Gαi3, including mediating C5a anaphylatoxin receptor–induced activation of macrophages, involvement in alveolar production of chemokines, transition of neutrophils from bone marrow into blood, and modulation of CD11b and CD62L expression that account for neutrophil adhesion to endothelial cells. Interestingly, C5a-stimulated endothelial polymorphonuclear neutrophil transmigration, but not chemotaxis, is enhanced versus reduced in the absence of neutrophil Gαi3 or Gαi2, respectively, and knockdown of endothelial Gαi2 caused decreased transmigration of wild-type neutrophils. These data demonstrate that Gαi2 and Gαi3 contribute to inflammation by redundant, overlapping, and Gαi-isoform–specific mechanisms, with Gαi2 exhibiting unique functions in both neutrophils and endothelial cells that appear essential for polymorphonuclear neutrophil recruitment in IC disease.


The FASEB Journal | 2013

Protective effects of pentoxifylline in pulmonary inflammation are adenosine receptor A2A dependent

Franziska Magdalena Konrad; Gianna Neudeck; Irene Vollmer; Kristian C. Ngamsri; Manfred Thiel; Jörg Reutershan

Pentoxifylline (PTX) has been shown to exert anti‐inflammatory effects in experimental acute lung injury. However, results in humans were controversial. Recent in vitro studies suggested that the adenosine receptor A2A may be required for PTX to be effective. Therefore, we studied the association between A2A and PTX in a murine model of LPS‐induced pulmonary inflammation. PTX treatment (10 mg/kg) reduced cellular influx (by 40%), microvascular permeability (30%), and the release of chemotactic cytokines into the alveolar space (TNF‐α 60%, IL‐6 60%, and CXCL2/3 53%, respectively). These protective effects were abolished completely in A2A–/– mice and in wild‐type mice that had been treated with the selective A2A antagonist (1 mg/kg), but effects were not different in mice with altered adenosine levels. In vitro transmigration assays revealed a pivotal role of the endothelium in PTX‐mediated PMN migration, with a reduction of 50% (2 mM PTX). This effect was also A2A dependent. Further, oxidative burst of human PMNs was A2A‐dependently reduced by 53% after PTX treatment. In summary, PTX exhibits its anti‐inflammatory effects in LPS‐induced lung injury through an A2A‐dependent pathway. These results will help to better understand previous conflicting data on PTX in inflammation and will direct further studies to consider the predominant role of A2A.—Konrad, F. M., Neudeck, G., Vollmer, I., Ngamsri, K. C., Thiel, M., Reutershan, J., Protective effects of pentoxifylline in pulmonary inflammation are adenosine receptor A2A dependent. FASEB J. 27, 3524–3535 (2013). www.fasebj.org


Cell Death and Disease | 2017

Inhibition of SDF-1 receptors CXCR4 and CXCR7 attenuates acute pulmonary inflammation via the adenosine A2B-receptor on blood cells.

Franziska Magdalena Konrad; Nadine Meichssner; Annette Bury; Kristian-Christos Ngamsri; Jörg Reutershan

Acute pulmonary inflammation is characterized by migration of polymorphonuclear neutrophils into the different compartments of the lung. Recent studies showed evidence that the chemokine stromal cell-derived factor (SDF)-1 and its receptors CXCR4 and CXCR7 influence migration of immune cells and their activity was linked to adenosine concentrations. We investigated the particular role of CXCR4- and CXCR7-inhibition and the potential link to the adenosine A2B-receptor, which plays an important anti-inflammatory role in the lung. After LPS-inhalation for 45 minutes, administration of the CXCR4-inhibitor (AMD3100) decreased transendothelial and transepithelial migration, whereas CXCR7-antagonism influenced epithelial migration exclusively. In A2B−/− mice, no anti-inflammatory effects were detectible through either one of the agents. Using chimeric mice, we identified A2B on hematopoietic cells to be crucial for these anti-inflammatory effects of CXCR4/7-inhibition. Both inhibitors decreased TNFα, IL6, CXCL1 and CXCL2/3 levels in the bronchoalveolar lavage of wild type mice, while not influencing the chemokine release in A2B−/− mice. Inflammation augmented the expression of both receptors and their inhibition increased A2B-levels upon inflammation. In vitro assays with human epithelium/endothelium confirmed our in vivo findings. During inflammation, inhibition of CXCR4- and CXCR7-receptors prevented microvascular permeability in wild type but not in A2B−/− mice, highlighting the pivotal role of an active A2B-receptor in this setting. The combination of both inhibitors had a synergistic effect in preventing capillary leakage. In conclusion, we determined the pivotal role of CXCR4- and CXCR7-inhibition in acute pulmonary inflammation, which depended on A2B-receptor signalling.


Journal of Immunology | 2017

The Pivotal Role of CXCR7 in Stabilization of the Pulmonary Epithelial Barrier in Acute Pulmonary Inflammation

Kristian-Christos Ngamsri; Anika Müller; Hans Bösmüller; Jutta Gamper-Tsigaras; Jörg Reutershan; Franziska Magdalena Konrad

Acute pulmonary inflammation is still a frightening complication in intensive care units and has a high mortality. Specific treatment is not available, and many details of the pathomechanism remain unclear. The recently discovered chemokine receptor CXCR7 and its ligand stromal cell–derived factor (SDF)-1 are known to be involved in inflammation. We chose to investigate the detailed role of CXCR7 in a murine model of LPS inhalation. Inflammation increased pulmonary expression of CXCR7, and the receptor was predominantly expressed on pulmonary epithelium and on polymorphonuclear neutrophil (PMNs) after transepithelial migration into the alveolar space. Specific inhibition of CXCR7 reduced transepithelial PMN migration by affecting the expression of adhesion molecules. CXCR7 antagonism reduced the most potent PMN chemoattractants CXCL1 and CXCL2/3. After inhibiting CXCR7, NF-κB phosphorylation was reduced in lungs of mice, tight junction formation increased, and protein concentration in the bronchoalveolar lavage diminished, showing the impact of CXCR7 on stabilizing microvascular permeability. In vitro studies with human cells confirmed the pivotal role of CXCR7 in pulmonary epithelium. Immunofluorescence of human lungs confirmed our in vivo data and showed an increase of the expression of CXCR7 in pulmonary epithelium. Highlighting the clinical potential of CXCR7 antagonism, nebulization of the agent before and after the inflammation showed impressive anti-inflammatory effects. Additional CXCR7 inhibition potentiated the effect of SDF-1 antagonism, most probably by downregulating SDF-1 and the second receptor of the chemokine (CXCR4) expression. In conclusion, our data identified the pivotal role of the receptor CXCR7 in pulmonary inflammation with a predominant effect on the pulmonary epithelium and PMNs.


Frontiers in Immunology | 2017

Anti-inflammatory Effects of Heme Oxygenase-1 Depend on Adenosine A2A- and A2B-Receptor Signaling in Acute Pulmonary Inflammation

Franziska Magdalena Konrad; Constantin Zwergel; Kristian-Christos Ngamsri; Jörg Reutershan

Acute pulmonary inflammation is still a frightening complication in intensive care units. In our previous study, we determined that heme oxygenase (HO)-1 had anti-inflammatory effects in pulmonary inflammation. Recent literature has emphasized a link between HO-1 and the nucleotide adenosine. Since adenosine A2A- and A2B-receptors play a pivotal role in pulmonary inflammation, we investigated their link to the enzyme HO-1. In a murine model of pulmonary inflammation, the activation of HO-1 by hemin significantly decreased polymorphonuclear leukocyte (PMN) migration into the lung. This anti-inflammatory reduction of PMN migration was abolished in A2A- and A2B-knockout mice. Administration of hemin significantly reduced chemokine levels in the BAL of wild-type animals but had no effects in A2A-/- and A2B-/- mice. Microvascular permeability was significantly attenuated in HO-1-stimulated wild-type mice, but not in A2A-/- and A2B-/- mice. The activity of HO-1 rose after LPS inhalation in wild-type animals and, surprisingly, also in A2A-/- and A2B-/- mice after the additional administration of hemin. Immunofluorescence images of animals revealed alveolar macrophages to be the major source of HO-1 activity in both knockout strains—in contrast to wild-type animals, where HO-1 was also significantly augmented in the lung tissue. In vitro studies on PMN migration further confirmed our in vivo findings. In conclusion, we linked the anti-inflammatory effects of HO-1 to functional A2A/A2B-receptor signaling under conditions of pulmonary inflammation. Our findings may explain why targeting HO-1 in acute pulmonary inflammation has failed to prove effective in some patients, since septic patients have altered adenosine receptor expression.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2014

Heme oxygenase-1 attenuates acute pulmonary inflammation by decreasing the release of segmented neutrophils from the bone marrow

Franziska Magdalena Konrad; Stefan Braun; Kristian-Christos Ngamsri; Irene Vollmer; Jörg Reutershan


PLOS ONE | 2014

The Unrecognized Effects of Phosphodiesterase 4 on Epithelial Cells in Pulmonary Inflammation

Franziska Magdalena Konrad; Annette Bury; Martin Alexander Schick; Kristian-Christos Ngamsri; Jörg Reutershan

Collaboration


Dive into the Franziska Magdalena Konrad's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Katja Pexa

University of Düsseldorf

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge