Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Frauke Nees is active.

Publication


Featured researches published by Frauke Nees.


Nature Neuroscience | 2012

Adolescent impulsivity phenotypes characterized by distinct brain networks

Robert Whelan; Patricia J. Conrod; Jean-Baptiste Poline; Anbarasu Lourdusamy; Tobias Banaschewski; Gareth J. Barker; Mark A. Bellgrove; Christian Büchel; Mark Byrne; Tarrant D.R. Cummins; Mira Fauth-Bühler; Herta Flor; Jürgen Gallinat; Andreas Heinz; Bernd Ittermann; Karl Mann; Jean-Luc Martinot; Edmund C. Lalor; Mark Lathrop; Eva Loth; Frauke Nees; Tomáš Paus; Marcella Rietschel; Michael N. Smolka; Rainer Spanagel; David N. Stephens; Maren Struve; Benjamin Thyreau; Sabine Vollstaedt-Klein; Trevor W. Robbins

The impulsive behavior that is often characteristic of adolescence may reflect underlying neurodevelopmental processes. Moreover, impulsivity is a multi-dimensional construct, and it is plausible that distinct brain networks contribute to its different cognitive, clinical and behavioral aspects. As these networks have not yet been described, we identified distinct cortical and subcortical networks underlying successful inhibitions and inhibition failures in a large sample (n = 1,896) of 14-year-old adolescents. Different networks were associated with drug use (n = 1,593) and attention-deficit hyperactivity disorder symptoms (n = 342). Hypofunctioning of a specific orbitofrontal cortical network was associated with likelihood of initiating drug use in early adolescence. Right inferior frontal activity was related to the speed of the inhibition process (n = 826) and use of illegal substances and associated with genetic variation in a norepinephrine transporter gene (n = 819). Our results indicate that both neural endophenotypes and genetic variation give rise to the various manifestations of impulsive behavior.


Science | 2015

Correlated gene expression supports synchronous activity in brain networks

Jonas Richiardi; Andre Altmann; Anna-Clare Milazzo; Catie Chang; M. Mallar Chakravarty; Tobias Banaschewski; Gareth J. Barker; Arun L.W. Bokde; Uli Bromberg; Christian Büchel; Patricia J. Conrod; Mira Fauth-Bühler; Herta Flor; Vincent Frouin; Jürgen Gallinat; Hugh Garavan; Penny A. Gowland; Andreas Heinz; Hervé Lemaitre; Karl Mann; Jean-Luc Martinot; Frauke Nees; Tomáš Paus; Zdenka Pausova; Marcella Rietschel; Trevor W. Robbins; Michael N. Smolka; Rainer Spanagel; Andreas Ströhle; Gunter Schumann

Cooperating brain regions express similar genes When the brain is at rest, a number of distinct areas are functionally connected. They tend to be organized in networks. Richiardi et al. compared brain imaging and gene expression data to build computational models of these networks. These functional networks are underpinned by the correlated expression of a core set of 161 genes. In this set, genes coding for ion channels and other synaptic functions such as neurotransmitter release dominate. Science, this issue p. 1241 Gene expression is more similar than expected by chance in brain regions that are functionally connected. During rest, brain activity is synchronized between different regions widely distributed throughout the brain, forming functional networks. However, the molecular mechanisms supporting functional connectivity remain undefined. We show that functional brain networks defined with resting-state functional magnetic resonance imaging can be recapitulated by using measures of correlated gene expression in a post mortem brain tissue data set. The set of 136 genes we identify is significantly enriched for ion channels. Polymorphisms in this set of genes significantly affect resting-state functional connectivity in a large sample of healthy adolescents. Expression levels of these genes are also significantly associated with axonal connectivity in the mouse. The results provide convergent, multimodal evidence that resting-state functional networks correlate with the orchestrated activity of dozens of genes linked to ion channel activity and synaptic function.


Nature | 2014

Neuropsychosocial profiles of current and future adolescent alcohol misusers

Robert Whelan; Richard Watts; Catherine Orr; Robert R. Althoff; Eric Artiges; Tobias Banaschewski; Gareth J. Barker; Arun L.W. Bokde; Christian Büchel; Fabiana Carvalho; Patricia J. Conrod; Herta Flor; Mira Fauth-Bühler; Vincent Frouin; Juergen Gallinat; Gabriela Gan; Penny A. Gowland; Andreas Heinz; Bernd Ittermann; Claire Lawrence; Karl Mann; Jean-Luc Martinot; Frauke Nees; Nick Ortiz; Marie-Laure Paillère-Martinot; Tomáš Paus; Zdenka Pausova; Marcella Rietschel; Trevor W. Robbins; Michael N. Smolka

A comprehensive account of the causes of alcohol misuse must accommodate individual differences in biology, psychology and environment, and must disentangle cause and effect. Animal models can demonstrate the effects of neurotoxic substances; however, they provide limited insight into the psycho-social and higher cognitive factors involved in the initiation of substance use and progression to misuse. One can search for pre-existing risk factors by testing for endophenotypic biomarkers in non-using relatives; however, these relatives may have personality or neural resilience factors that protect them from developing dependence. A longitudinal study has potential to identify predictors of adolescent substance misuse, particularly if it can incorporate a wide range of potential causal factors, both proximal and distal, and their influence on numerous social, psychological and biological mechanisms. Here we apply machine learning to a wide range of data from a large sample of adolescents (n = 692) to generate models of current and future adolescent alcohol misuse that incorporate brain structure and function, individual personality and cognitive differences, environmental factors (including gestational cigarette and alcohol exposure), life experiences, and candidate genes. These models were accurate and generalized to novel data, and point to life experiences, neurobiological differences and personality as important antecedents of binge drinking. By identifying the vulnerability factors underlying individual differences in alcohol misuse, these models shed light on the aetiology of alcohol misuse and suggest targets for prevention.


American Journal of Psychiatry | 2012

Risk Taking and the Adolescent Reward System: A Potential Common Link to Substance Abuse

Sophia Schneider; Jan Peters; Uli Bromberg; Stefanie Brassen; Stephan F. Miedl; Tobias Banaschewski; Gareth J. Barker; Patricia J. Conrod; Herta Flor; Hugh Garavan; Andreas Heinz; Bernd Ittermann; Mark Lathrop; Eva Loth; Karl Mann; Jean-Luc Martinot; Frauke Nees; Tomáš Paus; Marcella Rietschel; Trevor W. Robbins; Michael N. Smolka; Rainer Spanagel; Andreas Ströhle; Maren Struve; Gunter Schumann; Christian Büchel

OBJECTIVE Increased risk-taking behavior has been associated with addiction, a disorder also linked to abnormalities in reward processing. Specifically, an attenuated response of reward-related areas (e.g., the ventral striatum) to nondrug reward cues has been reported in addiction. One unanswered question is whether risk-taking preference is associated with striatal reward processing in the absence of substance abuse. METHOD Functional and structural MRI was performed in 266 healthy young adolescents and in 31 adolescents reporting potentially problematic substance use. Activation during reward anticipation (using the monetary incentive delay task) and to gray matter density were measured. Risk-taking bias was assessed by the Cambridge Gamble Task. RESULTS With increasing risk-taking bias, the ventral striatum showed decreased activation bilaterally during reward anticipation. Voxel-based morphometry showed that greater risk-taking bias was also associated with and partially mediated by lower gray matter density in the same structure. The decreased activation was also observed when participants with virtually any substance use were excluded. The group with potentially problematic substance use showed greater risk taking as well as lower striatal activation relative to matched comparison subjects from the main sample. CONCLUSIONS Risk taking and functional and structural properties of the reward system in adolescents are strongly linked prior to a possible onset of substance abuse, emphasizing their potential role in the predisposition to drug abuse.


Neuropsychopharmacology | 2012

Determinants of Early Alcohol Use In Healthy Adolescents: The Differential Contribution of Neuroimaging and Psychological Factors

Frauke Nees; Jelka Tzschoppe; Christopher J. Patrick; Sabine Vollstädt-Klein; Sabina Steiner; Luise Poustka; Tobias Banaschewski; Gareth J. Barker; Christian Büchel; Patricia J. Conrod; Hugh Garavan; Andreas Heinz; Jürgen Gallinat; Mark Lathrop; Karl Mann; Eric Artiges; Tomáš Paus; Jean-Baptiste Poline; Trevor W. Robbins; Marcella Rietschel; Michael N. Smolka; Rainer Spanagel; Maren Struve; Eva Loth; Gunter Schumann; Herta Flor

Individual variation in reward sensitivity may have an important role in early substance use and subsequent development of substance abuse. This may be especially important during adolescence, a transition period marked by approach behavior and a propensity toward risk taking, novelty seeking and alteration of the social landscape. However, little is known about the relative contribution of personality, behavior, and brain responses for prediction of alcohol use in adolescents. In this study, we applied factor analyses and structural equation modeling to reward-related brain responses assessed by functional magnetic resonance imaging during a monetary incentive delay task. In addition, novelty seeking, sensation seeking, impulsivity, extraversion, and behavioral measures of risk taking were entered as predictors of early onset of drinking in a sample of 14-year-old healthy adolescents (N=324). Reward-associated behavior, personality, and brain responses all contributed to alcohol intake with personality explaining a higher proportion of the variance than behavior and brain responses. When only the ventral striatum was used, a small non-significant contribution to the prediction of early alcohol use was found. These data suggest that the role of reward-related brain activation may be more important in addiction than initiation of early drinking, where personality traits and reward-related behaviors were more significant. With up to 26% of explained variance, the interrelation of reward-related personality traits, behavior, and neural response patterns may convey risk for later alcohol abuse in adolescence, and thus may be identified as a vulnerability factor for the development of substance use disorders.


JAMA Psychiatry | 2015

Early Cannabis Use, Polygenic Risk Score for Schizophrenia and Brain Maturation in Adolescence

Leon French; Courtney Gray; Gabriel Leonard; Michel Perron; G. Bruce Pike; Louis Richer; Jean R. Séguin; Suzanne Veillette; C. John Evans; Eric Artiges; Tobias Banaschewski; Arun W L Bokde; Uli Bromberg; Ruediger Bruehl; Christian Büchel; Anna Cattrell; Patricia J. Conrod; Herta Flor; Vincent Frouin; Jürgen Gallinat; Hugh Garavan; Penny A. Gowland; Andreas Heinz; Hervé Lemaitre; Jean-Luc Martinot; Frauke Nees; Dimitri Papadopoulos Orfanos; Melissa M. Pangelinan; Luise Poustka; Marcella Rietschel

IMPORTANCE Cannabis use during adolescence is known to increase the risk for schizophrenia in men. Sex differences in the dynamics of brain maturation during adolescence may be of particular importance with regard to vulnerability of the male brain to cannabis exposure. OBJECTIVE To evaluate whether the association between cannabis use and cortical maturation in adolescents is moderated by a polygenic risk score for schizophrenia. DESIGN, SETTING, AND PARTICIPANTS Observation of 3 population-based samples included initial analysis in 1024 adolescents of both sexes from the Canadian Saguenay Youth Study (SYS) and follow-up in 426 adolescents of both sexes from the IMAGEN Study from 8 European cities and 504 male youth from the Avon Longitudinal Study of Parents and Children (ALSPAC) based in England. A total of 1577 participants (aged 12-21 years; 899 [57.0%] male) had (1) information about cannabis use; (2) imaging studies of the brain; and (3) a polygenic risk score for schizophrenia across 108 genetic loci identified by the Psychiatric Genomics Consortium. Data analysis was performed from March 1 through December 31, 2014. MAIN OUTCOMES AND MEASURES Cortical thickness derived from T1-weighted magnetic resonance images. Linear regression tests were used to assess the relationships between cannabis use, cortical thickness, and risk score. RESULTS Across the 3 samples of 1574 participants, a negative association was observed between cannabis use in early adolescence and cortical thickness in male participants with a high polygenic risk score. This observation was not the case for low-risk male participants or for the low- or high-risk female participants. Thus, in SYS male participants, cannabis use interacted with risk score vis-à-vis cortical thickness (P = .009); higher scores were associated with lower thickness only in males who used cannabis. Similarly, in the IMAGEN male participants, cannabis use interacted with increased risk score vis-à-vis a change in decreasing cortical thickness from 14.5 to 18.5 years of age (t137 = -2.36; P = .02). Finally, in the ALSPAC high-risk group of male participants, those who used cannabis most frequently (≥61 occasions) had lower cortical thickness than those who never used cannabis (difference in cortical thickness, 0.07 [95% CI, 0.01-0.12]; P = .02) and those with light use (<5 occasions) (difference in cortical thickness, 0.11 [95% CI, 0.03-0.18]; P = .004). CONCLUSIONS AND RELEVANCE Cannabis use in early adolescence moderates the association between the genetic risk for schizophrenia and cortical maturation among male individuals. This finding implicates processes underlying cortical maturation in mediating the link between cannabis use and liability to schizophrenia.


Proceedings of the National Academy of Sciences of the United States of America | 2012

RASGRF2 regulates alcohol-induced reinforcement by influencing mesolimbic dopamine neuron activity and dopamine release

David Stacey; Ainhoa Bilbao; Matthieu Maroteaux; Tianye Jia; Alanna C. Easton; Sophie Longueville; Charlotte Nymberg; Tobias Banaschewski; Gareth J. Barker; Christian Büchel; Fabiana Carvalho; Patricia J. Conrod; Sylvane Desrivières; Mira Fauth-Bühler; Alberto Fernández-Medarde; Herta Flor; Jürgen Gallinat; Hugh Garavan; Arun L.W. Bokde; Andreas Heinz; Bernd Ittermann; Mark Lathrop; Claire Lawrence; Eva Loth; Anbarasu Lourdusamy; Karl Mann; Jean-Luc Martinot; Frauke Nees; Miklós Palkovits; Tomáš Paus

The firing of mesolimbic dopamine neurons is important for drug-induced reinforcement, although underlying genetic factors remain poorly understood. In a recent genome-wide association metaanalysis of alcohol intake, we identified a suggestive association of SNP rs26907 in the ras-specific guanine-nucleotide releasing factor 2 (RASGRF2) gene, encoding a protein that mediates Ca2+-dependent activation of the ERK pathway. We performed functional characterization of this gene in relation to alcohol-related phenotypes and mesolimbic dopamine function in both mice and adolescent humans. Ethanol intake and preference were decreased in Rasgrf2−/− mice relative to WT controls. Accordingly, ethanol-induced dopamine release in the ventral striatum was blunted in Rasgrf2−/− mice. Recording of dopamine neurons in the ventral tegmental area revealed reduced excitability in the absence of Ras-GRF2, likely because of lack of inhibition of the IA potassium current by ERK. This deficit provided an explanation for the altered dopamine release, presumably linked to impaired activation of dopamine neurons firing. Functional neuroimaging analysis of a monetary incentive–delay task in 663 adolescent boys revealed significant association of ventral striatal activity during reward anticipation with a RASGRF2 haplotype containing rs26907, the SNP associated with alcohol intake in our previous metaanalysis. This finding suggests a link between the RASGRF2 haplotype and reward sensitivity, a known risk factor for alcohol and drug addiction. Indeed, follow-up of these same boys at age 16 y revealed an association between this haplotype and number of drinking episodes. Together, these combined animal and human data indicate a role for RASGRF2 in the regulation of mesolimbic dopamine neuron activity, reward response, and alcohol use and abuse.


American Journal of Psychiatry | 2015

The Brain's Response to Reward Anticipation and Depression in Adolescence: Dimensionality, Specificity, and Longitudinal Predictions in a Community-Based Sample.

Argyris Stringaris; Pablo Vidal-Ribas Belil; Eric Artiges; Hervé Lemaitre; Fanny Gollier-Briant; Selina Wolke; Hélène Vulser; Ruben Miranda; Jani Penttilä; Maren Struve; Tahmine Fadai; Viola Kappel; Yvonne Grimmer; Robert Goodman; Luise Poustka; Patricia J. Conrod; Anna Cattrell; Tobias Banaschewski; Arun L.W. Bokde; Uli Bromberg; Christian Büchel; Herta Flor; Vincent Frouin; Juergen Gallinat; Hugh Garavan; Penny A. Gowland; Andreas Heinz; Bernd Ittermann; Frauke Nees; Dimitri Papadopoulos

OBJECTIVE The authors examined whether alterations in the brains reward network operate as a mechanism across the spectrum of risk for depression. They then tested whether these alterations are specific to anhedonia as compared with low mood and whether they are predictive of depressive outcomes. METHOD Functional MRI was used to collect blood-oxygen-level-dependent (BOLD) responses to anticipation of reward in the monetary incentive task in 1,576 adolescents in a community-based sample. Adolescents with current subthreshold depression and clinical depression were compared with matched healthy subjects. In addition, BOLD responses were compared across adolescents with anhedonia, low mood, or both symptoms, cross-sectionally and longitudinally. RESULTS Activity in the ventral striatum was reduced in participants with subthreshold and clinical depression relative to healthy comparison subjects. Low ventral striatum activation predicted transition to subthreshold or clinical depression in previously healthy adolescents at 2-year follow-up. Brain responses during reward anticipation decreased in a graded manner between healthy adolescents, adolescents with current or future subthreshold depression, and adolescents with current or future clinical depression. Low ventral striatum activity was associated with anhedonia but not low mood; however, the combined presence of both symptoms showed the strongest reductions in the ventral striatum in all analyses. CONCLUSIONS The findings suggest that reduced striatal activation operates as a mechanism across the risk spectrum for depression. It is associated with anhedonia in healthy adolescents and is a behavioral indicator of positive valence systems, consistent with predictions based on the Research Domain Criteria.


Neuroscience & Biobehavioral Reviews | 2017

Don’t fear ‘fear conditioning’: Methodological considerations for the design and analysis of studies on human fear acquisition, extinction, and return of fear

Tina B. Lonsdorf; Mareike M. Menz; Marta Andreatta; Miguel Fullana; Armita Golkar; Jan Haaker; Ivo Heitland; Andrea Hermann; Manuel Kuhn; Onno Kruse; Shira Meir Drexler; Ann Meulders; Frauke Nees; Andre Pittig; Jan Richter; Sonja Römer; Youssef Shiban; Anja Schmitz; Benjamin Straube; Bram Vervliet; Julia Wendt; Johanna M.P. Baas; Christian J. Merz

HighlightsOriginates from discussions on replicability and researchers degrees of freedom.Aims at stimulating discussions on methods applied in fear conditioning research.Addresses critical issues on terminology, design, methods, analysis.Serves as comprehensive compendium and critical evaluation of read‐out measures.Highlights methodological considerations when studying individual differences. ABSTRACT The so‐called ‘replicability crisis’ has sparked methodological discussions in many areas of science in general, and in psychology in particular. This has led to recent endeavours to promote the transparency, rigour, and ultimately, replicability of research. Originating from this zeitgeist, the challenge to discuss critical issues on terminology, design, methods, and analysis considerations in fear conditioning research is taken up by this work, which involved representatives from fourteen of the major human fear conditioning laboratories in Europe. This compendium is intended to provide a basis for the development of a common procedural and terminology framework for the field of human fear conditioning. Whenever possible, we give general recommendations. When this is not feasible, we provide evidence‐based guidance for methodological decisions on study design, outcome measures, and analyses. Importantly, this work is also intended to raise awareness and initiate discussions on crucial questions with respect to data collection, processing, statistical analyses, the impact of subtle procedural changes, and data reporting specifically tailored to the research on fear conditioning.


American Journal of Psychiatry | 2014

Neural and Cognitive Correlates of the Common and Specific Variance Across Externalizing Problems in Young Adolescence

Natalie Castellanos-Ryan; Maren Struve; Robert Whelan; Tobias Banaschewski; Gareth J. Barker; Arun L.W. Bokde; Uli Bromberg; Christian Büchel; Herta Flor; Mira Fauth-Bühler; Vincent Frouin; Juergen Gallinat; Penny A. Gowland; Andreas Heinz; Claire Lawrence; Jean-Luc Martinot; Frauke Nees; Tomáš Paus; Zdenka Pausova; Marcella Rietschel; Trevor W. Robbins; Michael N. Smolka; Gunter Schumann; Hugh Garavan; Patricia J. Conrod

Longitudinal and family-based research suggests that conduct disorder, substance misuse, and ADHD involve both unique forms of dysfunction as well as more specific dysfunctions unique to each condition. Using direct measures of brain function, this study also found evidence in both unique and disorder-specific perturbations.

Collaboration


Dive into the Frauke Nees's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael N. Smolka

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge