Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Frauke Zipp is active.

Publication


Featured researches published by Frauke Zipp.


Neurology | 2005

Multiple Sclerosis Severity Score Using disability and disease duration to rate disease severity

R. H. S. R. Roxburgh; S Seaman; Thomas Masterman; Anke Hensiek; Stephen Sawcer; Sandra Vukusic; I. Achiti; Christian Confavreux; M. Coustans; E. le Page; G. Edan; Gavin McDonnell; Stanley Hawkins; Maria Trojano; Maria Liguori; Eleonora Cocco; M. G. Marrosu; F. Tesser; Marialucrez Leone; Alexandra Weber; Frauke Zipp; B. Miterski; Joerg T. Epplen; Annette Bang Oturai; P. S. Sørensen; Elisabeth G. Celius; N. T. Lara; Xavier Montalban; Pablo Villoslada; Ana Martins da Silva

Background: There is no consensus method for determining progression of disability in patients with multiple sclerosis (MS) when each patient has had only a single assessment in the course of the disease. Methods: Using data from two large longitudinal databases, the authors tested whether cross-sectional disability assessments are representative of disease severity as a whole. An algorithm, the Multiple Sclerosis Severity Score (MSSS), which relates scores on the Expanded Disability Status Scale (EDSS) to the distribution of disability in patients with comparable disease durations, was devised and then applied to a collection of 9,892 patients from 11 countries to create the Global MSSS. In order to compare different methods of detecting such effects the authors simulated the effects of a genetic factor on disability. Results: Cross-sectional EDSS measurements made after the first year were representative of overall disease severity. The MSSS was more powerful than the other methods the authors tested for detecting different rates of disease progression. Conclusion: The Multiple Sclerosis Severity Score (MSSS) is a powerful method for comparing disease progression using single assessment data. The Global MSSS can be used as a reference table for future disability comparisons. While useful for comparing groups of patients, disease fluctuation precludes its use as a predictor of future disability in an individual.


PLOS Genetics | 2012

Comprehensive research synopsis and systematic meta-analyses in Parkinson's disease genetics : The PDGene database

Christina M. Lill; Johannes T. Roehr; Matthew B. McQueen; Fotini K. Kavvoura; Sachin Bagade; Brit-Maren M. Schjeide; Leif Schjeide; Esther Meissner; Ute Zauft; Nicole C. Allen; Tian-Jing Liu; Marcel Schilling; Kari J. Anderson; Gary W. Beecham; Daniela Berg; Joanna M. Biernacka; Alexis Brice; Anita L. DeStefano; Chuong B. Do; Nicholas Eriksson; Stewart A. Factor; Matthew J. Farrer; Tatiana Foroud; Thomas Gasser; Taye H. Hamza; John Hardy; Peter Heutink; Erin M. Hill-Burns; Christine Klein; Jeanne C. Latourelle

More than 800 published genetic association studies have implicated dozens of potential risk loci in Parkinsons disease (PD). To facilitate the interpretation of these findings, we have created a dedicated online resource, PDGene, that comprehensively collects and meta-analyzes all published studies in the field. A systematic literature screen of ∼27,000 articles yielded 828 eligible articles from which relevant data were extracted. In addition, individual-level data from three publicly available genome-wide association studies (GWAS) were obtained and subjected to genotype imputation and analysis. Overall, we performed meta-analyses on more than seven million polymorphisms originating either from GWAS datasets and/or from smaller scale PD association studies. Meta-analyses on 147 SNPs were supplemented by unpublished GWAS data from up to 16,452 PD cases and 48,810 controls. Eleven loci showed genome-wide significant (P<5×10−8) association with disease risk: BST1, CCDC62/HIP1R, DGKQ/GAK, GBA, LRRK2, MAPT, MCCC1/LAMP3, PARK16, SNCA, STK39, and SYT11/RAB25. In addition, we identified novel evidence for genome-wide significant association with a polymorphism in ITGA8 (rs7077361, OR 0.88, P = 1.3×10−8). All meta-analysis results are freely available on a dedicated online database (www.pdgene.org), which is cross-linked with a customized track on the UCSC Genome Browser. Our study provides an exhaustive and up-to-date summary of the status of PD genetics research that can be readily scaled to include the results of future large-scale genetics projects, including next-generation sequencing studies.


Nature Cell Biology | 2008

Sirt1 contributes critically to the redox-dependent fate of neural progenitors

Timour Prozorovski; Ulf Schulze-Topphoff; Robert Glumm; Jan Baumgart; Friederike Schröter; Olaf Ninnemann; Elise Siegert; Ivo Bendix; Oliver Brüstle; Robert Nitsch; Frauke Zipp; Orhan Aktas

Repair processes that are activated in response to neuronal injury, be it inflammatory, ischaemic, metabolic, traumatic or other cause, are characterized by a failure to replenish neurons and by astrogliosis. The underlying molecular pathways, however, are poorly understood. Here, we show that subtle alterations of the redox state, found in different brain pathologies, regulate the fate of mouse neural progenitor cells (NPCs) through the histone deacetylase (HDAC) Sirt1. Mild oxidation or direct activation of Sirt1 suppressed proliferation of NPCs and directed their differentiation towards the astroglial lineage at the expense of the neuronal lineage, whereas reducing conditions had the opposite effect. Under oxidative conditions in vitro and in vivo, Sirt1 was upregulated in NPCs, bound to the transcription factor Hes1 and subsequently inhibited pro-neuronal Mash1. In utero shRNA-mediated knockdown of Sirt1 in NPCs prevented oxidation-mediated suppression of neurogenesis and caused upregulation of Mash1 in vivo. Our results provide evidence for an as yet unknown metabolic master switch that determines the fate of neural progenitors.


The Lancet | 2000

Human brain-cell death induced by tumour-necrosis-factor-related apoptosis-inducing ligand (TRAIL)

Robert Nitsch; Ingo Bechmann; Rudolf A. Deisz; Dorit Haas; Thomas N Lehmann; Uwe Wendling; Frauke Zipp

Cell death induced by tumour-necrosis-factor-related apoptosis-inducing ligand (TRAIL) was believed to occur exclusively in tumour cells, suggesting that this drug is safe to use as an antitumour therapy. Concerns were raised, however, when cultured normal human hepatocytes were shown to be susceptible to TRAIL. Here we report that TRAIL induces apoptosis in the human brain. Our finding therefore argues against the use of TRAIL for therapy of human brain tumours. However, neuroinflammatory T cells that express TRAIL might induce apoptosis of brain tissue, indicating a potential target for treatment of multiple sclerosis.


Journal of Experimental Medicine | 2003

Treatment of Relapsing Paralysis in Experimental Encephalomyelitis by Targeting Th1 Cells through Atorvastatin

Orhan Aktas; Sonia Waiczies; Alina Smorodchenko; Jan Dörr; Bibiane Seeger; Timour Prozorovski; Stephanie Sallach; Matthias Endres; Stefan Brocke; Robert Nitsch; Frauke Zipp

Statins, known as inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, exhibit numerous functions related to inflammation, such as MHC class II down-regulation, interference with T cell adhesion, and induction of apoptosis. Here we demonstrate that both subcutaneous and oral administration of atorvastatin inhibit the development of actively induced chronic experimental autoimmune encephalomyelitis in SJL/J mice and significantly reduce the inflammatory infiltration into the central nervous system (CNS). When treatment was started after disease onset, atorvastatin reduced the incidence of relapses and protected from the development of further disability. Both the reduced autoreactive T cell response measured by proliferation toward the encephalitogenic peptide PLP139–151 and the cytokine profile indicate a potent blockade of T helper cell type 1 immune response. In in vitro assays atorvastatin not only inhibited antigen-specific responses, but also decreased T cell proliferation mediated by direct TCR engagement independently of MHC class II and LFA-1. Inhibition of proliferation was not due to apoptosis induction, but linked to a negative regulation on cell cycle progression. However, early T cell activation was unaffected, as reflected by unaltered calcium fluxes. Thus, our results provide evidence for a beneficial role of statins in the treatment of autoimmune attack on the CNS.


Journal of Immunology | 2004

Green Tea Epigallocatechin-3-Gallate Mediates T Cellular NF-κB Inhibition and Exerts Neuroprotection in Autoimmune Encephalomyelitis

Orhan Aktas; Timour Prozorovski; Alina Smorodchenko; Nicolai E. Savaskan; Roland Lauster; Peter-Michael Kloetzel; Carmen Infante-Duarte; Stefan Brocke; Frauke Zipp

Recent studies in multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE), point to the fact that even in the early phase of inflammation, neuronal pathology plays a pivotal role in the sustained disability of affected individuals. We show that the major green tea constituent, (−)-epigallocatechin-3-gallate (EGCG), dramatically suppresses EAE induced by proteolipid protein 139–151. EGCG reduced clinical severity when given at initiation or after the onset of EAE by both limiting brain inflammation and reducing neuronal damage. In orally treated mice, we found abrogated proliferation and TNF-α production of encephalitogenic T cells. In human myelin-specific CD4+ T cells, cell cycle arrest was induced, down-regulating the cyclin-dependent kinase 4. Interference with both T cell growth and effector function was mediated by blockade of the catalytic activities of the 20S/26S proteasome complex, resulting in intracellular accumulation of IκB-α and subsequent inhibition of NF-κB activation. Because its structure implicates additional antioxidative properties, EGCG was capable of protecting against neuronal injury in living brain tissue induced by N-methyl-d-aspartate or TRAIL and of directly blocking the formation of neurotoxic reactive oxygen species in neurons. Thus, a natural green tea constituent may open up a new therapeutic avenue for young disabled adults with inflammatory brain disease by combining, on one hand, anti-inflammatory and, on the other hand, neuroprotective capacities.


The FASEB Journal | 2005

Indolamine 2,3-dioxygenase is expressed in the CNS and down-regulates autoimmune inflammation

Erik Kwidzinski; Jörg Bunse; Orhan Aktas; Daniel Richter; Leman Mutlu; Frauke Zipp; Robert Nitsch; Ingo Bechmann

The tryptophan (trp)‐catabolizing enzyme indolamine 2,3‐dioxygenase (IDO) is induced by the T helper 1 (Th 1) cytokine IFN‐γ during infections in various tissues including the brain. Recent studies demonstrated an immune modulatory function of this enzyme, since IDO‐mediated depletion of trp hinders T cell proliferation, while its inhibition by 1‐methyl‐tryptophan (1‐Mt) induces breakdown of immune tolerance in the placenta, leading to rejection of allogeneic concepti. Here, we tested IDO expression and function during experimental autoimmune encephalomyelitis (EAE) actively induced in adult SJL mice by immunization with PLP139–151. IDO activity (determined by HPLC analysis of the kynurenine/tryptophan ratio) was increased in the spleen during the preclinical phase, and within the brain and spinal cord at the onset of symptoms. Immunocytochemistry revealed macrophages/activated microglia expressing IDO during EAE and in vitro experiments confirmed IDO induction in microglia upon IFN‐γ treatment with synergistic effects of TNF‐α. Inhibition of IDO by systemic administration of 1‐Mt at clinical onset significantly exacerbated disease scores. From these data, it is tempting to speculate that IFN‐γ from encephalitogenic Th 1 cells induces local IDO expression, thereby initiating a negative feedback loop which may underlie the self‐limitation of autoimmune inflammation during EAE and multiple sclerosis.


Nature Reviews Neurology | 2008

Mechanisms of Disease: aquaporin-4 antibodies in neuromyelitis optica

Sven Jarius; Friedemann Paul; Diego Franciotta; Patrick Waters; Frauke Zipp; Reinhard Hohlfeld; Angela Vincent; Brigitte Wildemann

Neuromyelitis optica (NMO) is a rare CNS inflammatory disorder that predominantly affects the optic nerves and spinal cord. Recent serological findings strongly suggest that NMO is a distinct disease rather than a subtype of multiple sclerosis. In NMO, serum antibodies, collectively known as NMO-IgG, characteristically bind to cerebral microvessels, pia mater and Virchow–Robin spaces. The main target antigen for this immunoreactivity has been identified as aquaporin-4 (AQP4). The antibodies are highly specific for NMO, and they are also found in patients with longitudinally extensive transverse myelitis without optic neuritis, which is thought to be a precursor to NMO in some cases. An antibody-mediated pathogenesis for NMO is supported by several observations, including the characteristics of the AQP4 antibodies, the distinct NMO pathology—which includes IgG and complement deposition and loss of AQP4 from spinal cord lesions—and emerging evidence of the beneficial effects of B-cell depletion and plasma exchange. Many aspects of the pathogenesis, however, remain unclear.


Annals of Neurology | 2011

Genome-wide meta-analysis identifies novel multiple sclerosis susceptibility loci

Nikolaos A. Patsopoulos; Federica Esposito; Joachim Reischl; Stephan Lehr; David Bauer; Jürgen Heubach; Rupert Sandbrink; Christoph Pohl; Gilles Edan; Ludwig Kappos; David Miller; Javier Montalbán; Chris H. Polman; Mark Freedman; Hans-Peter Hartung; Barry G. W. Arnason; Giancarlo Comi; Stuart D. Cook; Massimo Filippi; Douglas S. Goodin; Paul O'Connor; George C. Ebers; Dawn Langdon; Anthony T. Reder; Anthony Traboulsee; Frauke Zipp; Sebastian Schimrigk; Jan Hillert; Melanie Bahlo; David R. Booth

To perform a 1‐stage meta‐analysis of genome‐wide association studies (GWAS) of multiple sclerosis (MS) susceptibility and to explore functional consequences of new susceptibility loci.


Neuron | 2005

Neuronal Damage in Autoimmune Neuroinflammation Mediated by the Death Ligand TRAIL

Orhan Aktas; Alina Smorodchenko; Stefan Brocke; Carmen Infante-Duarte; Ulf Schulze Topphoff; Johannes Vogt; Timour Prozorovski; Susanne Meier; Venera Osmanova; Elena E. Pohl; Ingo Bechmann; Robert Nitsch; Frauke Zipp

Here, we provide evidence for a detrimental role of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in neural death in T cell-induced experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). Clinical severity and neuronal apoptosis in brainstem motor areas were substantially reduced upon brain-specific blockade of TRAIL after induction of EAE through adoptive transfer of encephalitogenic T cells. Furthermore, TRAIL-deficient myelin-specific lymphocytes showed reduced encephalitogenicity when transferred to wild-type mice. Conversely, intracerebral delivery of TRAIL to animals with EAE increased clinical deficits, while naive mice were not susceptible to TRAIL. Using organotypic slice cultures as a model for living brain tissue, we found that neurons were susceptible to TRAIL-mediated injury induced by encephalitogenic T cells. Thus, in addition to its known immunoregulatory effects, the death ligand TRAIL contributes to neural damage in the inflamed brain.

Collaboration


Dive into the Frauke Zipp's collaboration.

Top Co-Authors

Avatar

Orhan Aktas

Humboldt University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Friedemann Paul

Humboldt University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Heinz Wiendl

University of Würzburg

View shared research outputs
Top Co-Authors

Avatar

Ralf Gold

Ruhr University Bochum

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge