Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Frazer R. Pearce is active.

Publication


Featured researches published by Frazer R. Pearce.


Nature | 2005

Simulations of the formation, evolution and clustering of galaxies and quasars

Volker Springel; Simon D. M. White; Adrian Jenkins; Carlos S. Frenk; Naoki Yoshida; Liang Gao; Julio F. Navarro; Robert J. Thacker; Darren J. Croton; John C. Helly; J. A. Peacock; Shaun Cole; Peter A. Thomas; H. M. P. Couchman; August E. Evrard; Joerg M. Colberg; Frazer R. Pearce

The cold dark matter model has become the leading theoretical picture for the formation of structure in the Universe. This model, together with the theory of cosmic inflation, makes a clear prediction for the initial conditions for structure formation and predicts that structures grow hierarchically through gravitational instability. Testing this model requires that the precise measurements delivered by galaxy surveys can be compared to robust and equally precise theoretical calculations. Here we present a simulation of the growth of dark matter structure using 2,1603 particles, following them from redshift z = 127 to the present in a cube-shaped region 2.230 billion lightyears on a side. In postprocessing, we also follow the formation and evolution of the galaxies and quasars. We show that baryon-induced features in the initial conditions of the Universe are reflected in distorted form in the low-redshift galaxy distribution, an effect that can be used to constrain the nature of dark energy with future generations of observational surveys of galaxies.Numerical simulations are a primary theoretical tool to study the nonlinear gravitational growth of structure in the Universe, and to link the initial conditions of cold dark matter (CDM) cosmogonies to observations of galaxies at the present day. Without direct numerical simulation, the hierarchical build-up of structure with its threedimensional dynamics would be largely inaccessible. Since the dominant mass component, the dark matter, is assumed to consist of weakly interacting elementary particles that interact only gravitationally, such simulations use a set of discrete point particles to represent the collisionless dark matter fluid. This representation as an N-body system is obviously only a coarse approximation, and im-


Monthly Notices of the Royal Astronomical Society | 2003

Stable clustering, the halo model and non-linear cosmological power spectra

Rodney Smith; J. A. Peacock; Adrian Jenkins; Simon D. M. White; Carlos S. Frenk; Frazer R. Pearce; Peter A. Thomas; G. Efstathiou; H. M. P. Couchman

We present the results of a large library of cosmological N-body simulations, using power-law initial spectra.


Monthly Notices of the Royal Astronomical Society | 2007

Fundamental differences between SPH and grid methods

Oscar Agertz; Ben Moore; Joachim Stadel; Doug Potter; Francesco Miniati; Justin I. Read; Lucio Mayer; Artur Gawryszczak; Andrey V. Kravtsov; Åke Nordlund; Frazer R. Pearce; Vicent Quilis; Douglas H. Rudd; Volker Springel; James M. Stone; Elizabeth J. Tasker; Romain Teyssier; James Wadsley; Rolf Walder

We have carried out a comparison study of hydrodynamical codes by investigating their performance in modelling interacting multiphase fluids. The two commonly used techniques of grid and smoothed particle hydrodynamics (SPH) show striking differences in their ability to model processes that are fundamentally important across many areas of astrophysics. Whilst Eulerian grid based methods are able to resolve and treat important dynamical instabilities, such as Kelvin-Helmholtz or Rayleigh-Taylor, these processes are poorly or not at all resolved by existing SPH techniques. We show that the reason for this is that SPH, at least in its standard implementation, introduces spurious pressure forces on particles in regions where there are steep density gradients. This results in a boundary gap of the size of an SPH smoothing kernel radius over which interactions are severely damped.


The Astrophysical Journal | 1999

The Santa Barbara Cluster Comparison Project: A Comparison of Cosmological Hydrodynamics Solutions

Carlos S. Frenk; Simon D. M. White; P. Bode; J. R. Bond; Gregory Bryan; Renyue Cen; H. M. P. Couchman; August E. Evrard; Nickolay Y. Gnedin; Adrian Jenkins; Alexei M. Khokhlov; Anatoly Klypin; Julio F. Navarro; Michael L. Norman; Jeremiah P. Ostriker; J. M. Owen; Frazer R. Pearce; Ue-Li Pen; M. Steinmetz; Peter A. Thomas; Jens V. Villumsen; J. W. Wadsley; Michael S. Warren; Guohong Xu; Gustavo Yepes

We have simulated the formation of an X-ray cluster in a cold dark matter universe using 12 different codes. The codes span the range of numerical techniques and implementations currently in use, including smoothed particle hydrodynamics (SPH) and grid methods with fixed, deformable, or multilevel meshes. The goal of this comparison is to assess the reliability of cosmological gasdynamical simulations of clusters in the simplest astrophysically relevant case, that in which the gas is assumed to be nonradiative. We compare images of the cluster at different epochs, global properties such as mass, temperature and X-ray luminosity, and radial profiles of various dynamical and thermodynamical quantities. On the whole, the agreement among the various simulations is gratifying, although a number of discrepancies exist. Agreement is best for properties of the dark matter and worst for the total X-ray luminosity. Even in this case, simulations that adequately resolve the core radius of the gas distribution predict total X-ray luminosities that agree to within a factor of 2. Other quantities are reproduced to much higher accuracy. For example, the temperature and gas mass fraction within the virial radius agree to within about 10%, and the ratio of specific dark matter kinetic to gas thermal energies agree to within about 5%. Various factors, including differences in the internal timing of the simulations, contribute to the spread in calculated cluster properties. Based on the overall consistency of results, we discuss a number of general properties of the cluster we have modeled.


The Astrophysical Journal | 2002

Galaxy clusters in Hubble volume simulations: Cosmological constraints from sky survey populations

August E. Evrard; T. J. MacFarland; Hmp Couchman; J. M. Colberg; Naoki Yoshida; Simon D. M. White; Adrian Jenkins; Carlos S. Frenk; Frazer R. Pearce; J. A. Peacock; Peter A. Thomas

We use gigaparticle N-body simulations to study galaxy cluster populations in Hubble volumes of ΛCDM and ΓCDM world models.


The Astrophysical Journal | 1995

Hydra: an Adaptive-Mesh Implementation of P 3M-SPH

H. M. P. Couchman; Frazer R. Pearce; Peter A. Thomas

We present an implementation of Smoothed Particle Hydrodynamics (SPH) in an adaptive-mesh PPPM algorithm. The code evolves a mixture of purely gravitational particles and gas particles. The code retains the desirable properties of previous PPPM--SPH implementations; speed under light clustering, naturally periodic boundary conditions and accurate pairwise forces. Under heavy clustering the cycle time of the new code is only 2--3 times slower than for a uniform particle distribution, overcoming the principal disadvantage of previous implementations\dash a dramatic loss of efficiency as clustering develops. A 1000 step simulation with 65,536 particles (half dark, half gas) runs in one day on a Sun Sparc10 workstation. The choice of time integration scheme is investigated in detail. A simple single-step Predictor--Corrector type integrator is most efficient. A method for generating an initial distribution of particles by allowing a a uniform temperature gas of SPH particles to relax within a periodic box is presented. The average SPH density that results varies by


Monthly Notices of the Royal Astronomical Society | 2001

Revisiting the cosmic cooling crisis

Michael L. Balogh; Frazer R. Pearce; Richard G. Bower; Scott T. Kay

\sim\pm1.3


Scopus | 2011

Haloes gone MAD: The Halo-Finder Comparison Project

Alexander Knebe; Steffen R. Knollmann; Y. Ascasibar; Gustavo Yepes; Stuart I. Muldrew; Frazer R. Pearce; M. A. Aragon-Calvo; Bridget Falck; Peter Behroozi; Daniel Ceverino; S. Colombi; Jürg Diemand; Doug Potter; Joachim Stadel; K. Dolag; Francesca Iannuzzi; Michal Maciejewski; Patricia K. Fasel; Jeffrey P. Gardner; S. Gottlöber; C-H. Hsu; Anatoly Klypin; Zarija Lukić; Cameron K. McBride; Susana Planelles; Vicent Quilis; Yann Rasera; Fabrice Roy; Justin I. Read; Paul M. Ricker

\%. We present a modified form of the Layzer--Irvine equation which includes the thermal contribution of the gas together with radiative cooling. Tests of sound waves, shocks, spherical infall and collapse are presented. Appropriate timestep constraints sufficient to ensure both energy and entropy conservation are discussed. A cluster simulation, repeating Thomas and


Monthly Notices of the Royal Astronomical Society | 2002

The effect of cooling and preheating on the X-ray properties of clusters of galaxies

Orrarujee Muanwong; Peter A. Thomas; Scott T. Kay; Frazer R. Pearce

Recent measurements of the K-band luminosity function now provide us with strong, reliable constraints on the fraction of baryons which have cooled. Globally, this fraction is only about 5 per cent, and there is no strong evidence that it is significantly higher in clusters. Without an effective subgrid feedback prescription, the cooled gas fraction in any numerical simulation exceeds these observational constraints, and increases with increasing resolution. This compromises any discussion of galaxy and cluster properties based on results of simulations which include cooling but do not implement an effective feedback mechanism.


Monthly Notices of the Royal Astronomical Society | 2000

The effect of radiative cooling on the X-ray properties of galaxy clusters

Frazer R. Pearce; Peter A. Thomas; H. M. P. Couchman; A. C. Edge

We present a detailed comparison of fundamental dark matter halo properties retrieved by a substantial number of different halo finders. These codes span a wide range of techniques including friends-of-friends, spherical-overdensity and phase-space-based algorithms. We

Collaboration


Dive into the Frazer R. Pearce's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adrian Jenkins

British Antarctic Survey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexander Knebe

Autonomous University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Pascal J. Elahi

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Julian Onions

University of Nottingham

View shared research outputs
Researchain Logo
Decentralizing Knowledge