Fred E. Vescelus
Jet Propulsion Laboratory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Fred E. Vescelus.
The Astrophysical Journal | 2013
Ben R. Oppenheimer; Christoph Baranec; C. A. Beichman; Douglas Brenner; Rick Burruss; Eric Cady; Justin R. Crepp; Richard G. Dekany; Rob Fergus; David Hale; Lynne A. Hillenbrand; Sasha Hinkley; David W. Hogg; David A. King; E. R. Ligon; Thomas G. Lockhart; Ricky Nilsson; Ian R. Parry; Laurent Pueyo; Emily L. Rice; Jennifer E. Roberts; Lewis C. Roberts; M. Shao; Anand Sivaramakrishnan; Rémi Soummer; Tuan Truong; Gautam Vasisht; Aaron Veicht; Fred E. Vescelus; James K. Wallace
We obtained spectra in the wavelength range λ = 995-1769 nm of all four known planets orbiting the star HR 8799. Using the suite of instrumentation known as Project 1640 on the Palomar 5 m Hale Telescope, we acquired data at two epochs. This allowed for multiple imaging detections of the companions and multiple extractions of low-resolution (R ~ 35) spectra. Data reduction employed two different methods of speckle suppression and spectrum extraction, both yielding results that agree. The spectra do not directly correspond to those of any known objects, although similarities with L and T dwarfs are present, as well as some characteristics similar to planets such as Saturn. We tentatively identify the presence of CH_4 along with NH_3 and/or C_2H_2, and possibly CO_2 or HCN in varying amounts in each component of the system. Other studies suggested red colors for these faint companions, and our data confirm those observations. Cloudy models, based on previous photometric observations, may provide the best explanation for the new data presented here. Notable in our data is that these presumably co-eval objects of similar luminosity have significantly different spectra; the diversity of planets may be greater than previously thought. The techniques and methods employed in this paper represent a new capability to observe and rapidly characterize exoplanetary systems in a routine manner over a broad range of planet masses and separations. These are the first simultaneous spectroscopic observations of multiple planets in a planetary system other than our own.
The Astrophysical Journal | 2015
Laurent Pueyo; Rémi Soummer; J. Hoffmann; Rebecca Oppenheimer; James R. Graham; Neil Zimmerman; Chengxing Zhai; James K. Wallace; Fred E. Vescelus; Aaron Veicht; Gautam Vasisht; Tuan Truong; Anand Sivaramakrishnan; M. Shao; Lewis C. Roberts; Jennifer E. Roberts; Emily L. Rice; Ian R. Parry; Ricky Nilsson; Thomas G. Lockhart; E. R. Ligon; David A. King; Sasha Hinkley; Lynne A. Hillenbrand; David Hale; Richard G. Dekany; Justin R. Crepp; Eric Cady; Rick Burruss; Douglas Brenner
We present an analysis of the orbital motion of the four substellar objects orbiting HR 8799. Our study relies on the published astrometric history of this system augmented with an epoch obtained with the Project 1640 coronagraph with an integral field spectrograph (IFS) installed at the Palomar Hale telescope. We first focus on the intricacies associated with astrometric estimation using the combination of an extreme adaptive optics system (PALM-3000), a coronagraph, and an IFS. We introduce two new algorithms. The first one retrieves the stellar focal plane position when the star is occulted by a coronagraphic stop. The second one yields precise astrometric and spectrophotometric estimates of faint point sources even when they are initially buried in the speckle noise. The second part of our paper is devoted to studying orbital motion in this system. In order to complement the orbital architectures discussed in the literature, we determine an ensemble of likely Keplerian orbits for HR 8799bcde, using a Bayesian analysis with maximally vague priors regarding the overall configuration of the system. Although the astrometric history is currently too scarce to formally rule out coplanarity, HR 8799d appears to be misaligned with respect to the most likely planes of HR 8799bce orbits. This misalignment is sufficient to question the strictly coplanar assumption made by various authors when identifying a Laplace resonance as a potential architecture. Finally, we establish a high likelihood that HR 8799de have dynamical masses below 13 M_(Jup), using a loose dynamical survival argument based on geometric close encounters. We illustrate how future dynamical analyses will further constrain dynamical masses in the entire system.
Proceedings of SPIE | 2012
Ben R. Oppenheimer; Charles A. Beichman; Douglas Brenner; Rick Burruss; Eric Cady; Justin R. Crepp; Lynne A. Hillenbrand; Sasha Hinkley; E. R. Ligon; Thomas G. Lockhart; Ian R. Parry; Laurent Pueyo; Emily L. Rice; Lewis C. Roberts; Jennifer E. Roberts; Michael Shao; Anand Sivaramakrishnan; Rémi Soummer; Gautam Vasisht; Fred E. Vescelus; J. Kent Wallace; Chengxing Zhai; Neil Zimmerman
Project 1640, a high-contrast spectral-imaging effort involving a coordinated set of instrumentation and software, built at AMNH, JPL, Cambridge and Caltech, has been commissioned and is fully operational. This novel suite of instrumentation includes a 3388+241-actuator adaptive optics system, an optimized apodized pupil Lyot coronagraph, an integral field spectrograph, and an interferometric calibration wave front sensor. Project 1640 is the first of its kind of instrumentation, designed to image and characterize planetary systems around nearby stars, employing a variety of techniques to break the speckle-noise barrier. It is operational roughly one year before any similar project, with the goal of reaching a contrast of 10-7 at 1 arcsecond separation. We describe the instrument, highlight recent results, and document on-sky performance at the start of a 3-year, 99-night survey at the Palomar 5-m Hale telescope.
The Astronomical Journal | 2012
Lewis C. Roberts; Emily L. Rice; Charles A. Beichman; Douglas Brenner; Rick Burruss; Justin R. Crepp; Richard G. Dekany; Lynne A. Hillenbrand; Sasha Hinkley; E. Robert Ligon; Thomas G. Lockhart; David A. King; Stanimir Metchev; Ben R. Oppenheimer; Ian R. Parry; Laurent Pueyo; Jennifer E. Roberts; Michael Shao; Anand Sivaramakrishnan; Rémi Soummer; Gautam Vasisht; Fred E. Vescelus; J. Kent Wallace; Neil Zimmerman; Chengxing Zhai
We used the Project 1640 near-infrared coronagraph and integral field spectrograph to observe 19 young solar-type stars. Five of these stars are known binary stars and we detected the late-type secondaries and were able to measure their JH spectra with a resolution of R ~ 30. The reduced, extracted, and calibrated spectra were compared to template spectra from the IRTF spectral library. With this comparison, we test the accuracy and consistency of spectral-type determination with the low-resolution near-infrared spectra from P1640. Additionally, we determine effective temperature and surface gravity of the companions by fitting synthetic spectra calculated with the PHOENIX model atmosphere code. We also present several new epochs of astrometry of each of the systems. Together, these data increase our knowledge and understanding of the stellar make up of these systems. In addition to the astronomical results, the analysis presented helps validate the Project 1640 data reduction and spectral extraction processes and the utility of low-resolution, near-infrared spectra for characterizing late-type companions in multiple systems.
Proceedings of SPIE | 2013
Eric Cady; Christoph Baranec; Charles A. Beichman; Douglas Brenner; Rick Burruss; Justin R. Crepp; Richard G. Dekany; David Hale; Lynne A. Hillenbrand; Sasha Hinkley; E. Robert Ligon; Thomas G. Lockhart; Ben R. Oppenheimer; Ian R. Parry; Laurent Pueyo; Emily L. Rice; Lewis C. Roberts; Jennifer E. Roberts; Michael Shao; Anand Sivaramakrishnan; Rémi Soummer; Hong Tang; Tuan Truong; Gautam Vasisht; Fred E. Vescelus; J. Kent Wallace; Chengxing Zhai; Neil Zimmerman
The Project 1640 instrument on the 200-inch Hale telescope at Palomar Observatory is a coronagraphic instru- ment with an integral eld spectrograph at the back end, designed to nd young, self-luminous planets around nearby stars. To reach the necessary contrast for this, the PALM-3000 adaptive optics system corrects for fast atmospheric speckles, while CAL, a phase-shifting interferometer in a Mach-Zehnder con guration, measures the quasistatic components of the complex electric eld in the pupil plane following the coronagraphic stop. Two additional sensors measure and control low-order modes. These eld measurements may then be combined with a system model and data taken separately using a white-light source internal to the AO system to correct for both phase and amplitude aberrations. Here, we discuss and demonstrate the procedure to maintain a half-plane dark hole in the image plane while the spectrograph is taking data, including initial on-sky performance.
Proceedings of SPIE | 2012
Chengxing Zhai; Gautam Vasisht; M. Shao; Thomas G. Lockhart; Eric Cady; Ben R. Oppenheimer; Rick Burruss; Jennifer E. Roberts; C. A. Beichman; Douglas Brenner; Justin R. Crepp; Richard G. Dekany; Sasha Hinkley; Lynne A. Hillenbrand; E. R. Ligon; Ian R. Parry; Laurent Pueyo; Emily L. Rice; Lewis C. Roberts; Anand Sivaramakrishnan; R. Soummer; Fred E. Vescelus; K. Wallace; Neil Zimmerman
P1640 calibrator is a wavefront sensor working with the P1640 coronagraph and the Palomar 3000 actuator adaptive optics system (P3K) at the Palomar 200 inch Hale telescope. It measures the wavefront by interfering post-coronagraph light with a reference beam formed by low-pass filtering the blocked light from the coronagraph focal plane mask. The P1640 instrument has a similar architecture to the Gemini Planet Imager (GPI) and its performance is currently limited by the quasi-static speckles due to non-common path wavefront errors, which comes from the non-common path for the light to arrive at the AO wavefront sensor and the coronagraph mask. By measuring the wavefront after the coronagraph mask, the non-common path wavefront error can be estimated and corrected by feeding back the error signal to the deformable mirror (DM) of the P3K AO system. Here, we present a first order wavefront estimation algorithm and an instrument calibration scheme used in experiments done recently at Palomar observatory. We calibrate the P1640 calibrator by measuring its responses to poking DM actuators with a sparse checkerboard pattern at different amplitudes. The calibration yields a complex normalization factor for wavefront estimation and establishes the registration of the DM actuators at the pupil camera of the P1640 calibrator, necessary for wavefront correction. Improvement of imaging quality after feeding back the wavefront correction to the AO system demonstrated the efficacy of the algorithm.
Proceedings of SPIE | 2014
Rick Burruss; Richard G. Dekany; Jennifer E. Roberts; J. Chris Shelton; J. Kent Wallace; Jonathan Tesch; Dean L. Palmer; David Hale; Randall D. Bartos; Kevin Rykoski; Carolyn M. Heffner; Jamey E. Eriksen; Fred E. Vescelus
We report on the status of PALM-3000, the second generation adaptive optics instrument for the 5.1 meter Hale telescope at Palomar Observatory. PALM-3000 was released as a facility class instrument in October 2011, and has since been used on the Hale telescope a total of over 250 nights. In the past year, the PALM-3000 team introduced several instrument upgrades, including the release of the 32x32 pupil sampling mode which allows for correction on fainter guide stars, the upgrade of wavefront sensor relay optics, the diagnosis and repair of hardware problems, and the release of software improvements. We describe the performance of the PALM-3000 instrument as a result of these upgrades, and provide on-sky results. In the 32x32 pupil sampling mode (15.8 cm per subaperture), we have achieved K-band strehl ratios as high as 11% on a 14.4 mv star, and in the 64x64 pupil sampling mode (8.1 cm per subaperture), we have achieved K-band strehl ratios as high as 86% on stars brighter than 7th mv.
Low Light Level Devices for Science and Technolgy | 1976
Fred E. Vescelus; Gault A. Antcliffe
Much effort has recently been devoted to Charge Coupled Devices (CCDs) as imaging detectors. This paper describes a large imaging array CCD program currently underway at the Jet Propulsion Laboratory and Texas Instruments and presents test results obtained on both 100 x 160 element and 400 x 400 element arrays. Expected low light level performance is also given, along with a brief description of future plans.
Proceedings of SPIE | 2013
Chengxing Zhai; Gautam Vasisht; M. Shao; Thomas G. Lockhart; Eric Cady; Ben R. Oppenheimer; Rick Burruss; Jennifer E. Roberts; C. A. Beichman; Douglas Brenner; Justin R. Crepp; Richard G. Dekany; Lynne A. Hillenbrand; Sasha Hinkley; Ian R. Parry; Laurent Pueyo; Emily L. Rice; Lewis C. Roberts; Anand Sivaramakrishnan; R. Soummer; Hong Tang; Fred E. Vescelus; K. Wallace; Neil Zimmerman
P1640 high contrast imaging system on the Palomar 200 inch Telescope consists of an apodized-pupil Lyot coronagraph, the PALM-3000 adaptive optics (P3K-AO), and P1640 Calibrator (CAL). Science images are recorded by an integral field spectrograph covering J-H bands for detecting and characterizing stellar companions. With aberrations from atmosphere corrected by the P3K-AO, instrument performance is limited mainly by the quasi-static speckles due to noncommon path wavefront aberrations for the light to propagate to the P3K-AO wavefront sensor and to the coronagraph mask. The non-common path wavefront aberrations are sensed by CAL, which measures the post-coronagraph E-field using interferometry, and can be effectively corrected by offsetting the P3K-AO deformable mirror target position accordingly. Previously, we have demonstrated using CAL measurements to correct high order wavefront aberrations, which is directly connected to the static speckles in the image plane. Low order wavefront, on the other hand, usually of larger amplitudes, causes light to leak through the coronagraph making the whole image plane brighter. Knowledge error in low order wavefront aberrations can also affect the estimation of the high order wavefront. Even though, CAL is designed to sense efficiently high order wavefront aberrations, the low order wavefront front can be inferred with less sensitivity. Here, we describe our method for estimating both low and high order wavefront aberrations using CAL measurements by propagating the post-coronagraph E-field to a pupil before the coronagraph. We present the results from applying this method to both simulated and experiment data.
The National Symposium and Workshop on Optical Platforms | 1984
Fred E. Vescelus; James A. Dunne
The special requirements imposed by planetary missions require that the spacecraft which are designed to conduct them have certain unique properties as platforms for optical instruments. This paper will provide a general overview of these properties and discuss in some detail a current state-of-the-art planetary platform, the Galileo planetary spacecraft.