Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fred G. Pluthero is active.

Publication


Featured researches published by Fred G. Pluthero.


Nature Genetics | 2011

Mutations in NBEAL2, encoding a BEACH protein, cause gray platelet syndrome

Walter H. A. Kahr; Jesse Hinckley; Ling Li; Hansjörg Schwertz; Hilary Christensen; Jesse W. Rowley; Fred G. Pluthero; Denisa Urban; Shay Fabbro; Brie Nixon; Rick Gadzinski; Mike Storck; Kai Wang; Gi Yung Ryu; Shawn M. Jobe; Brian C. Schutte; Jack Moseley; Noeleen B. Loughran; John Parkinson; Andrew S. Weyrich; Jorge Di Paola

Next-generation RNA sequence analysis of platelets from an individual with autosomal recessive gray platelet syndrome (GPS, MIM139090) detected abnormal transcript reads, including intron retention, mapping to NBEAL2 (encoding neurobeachin-like 2). Genomic DNA sequencing confirmed mutations in NBEAL2 as the genetic cause of GPS. NBEAL2 encodes a protein containing a BEACH domain that is predicted to be involved in vesicular trafficking and may be critical for the development of platelet α-granules.


Blood | 2013

Abnormalities in the alternative pathway of complement in children with hematopoietic stem cell transplant-associated thrombotic microangiopathy

Sonata Jodele; Christoph Licht; Jens Goebel; Bradley P. Dixon; Kejian Zhang; Theru A. Sivakumaran; Stella M. Davies; Fred G. Pluthero; Lily Lu; Benjamin L. Laskin

Hematopoietic stem cell transplant (HSCT)-associated thrombotic microangiopathy (TMA) is a complication that occurs in 25% to 35% of HSCT recipients and shares histomorphologic similarities with hemolytic uremic syndrome (HUS) and thrombotic thrombocytopenic purpura (TTP). The hallmark of all thrombotic microangiopathies is vascular endothelial cell injury of various origins, resulting in microangiopathic hemolytic anemia, platelet consumption, fibrin deposition in the microcirculation, and tissue damage. Although significant advances have been made in understanding the pathogenesis of other thrombotic microangiopathies, post-HSCT TMA remains poorly understood. We report an analysis of the complement alternative pathway, which has recently been linked to the pathogenesis of both the Shiga toxin mediated and the atypical forms of HUS, with a focus on genetic variations in the complement Factor H (CFH) gene cluster and CFH autoantibodies in six children with post-HSCT TMA. We identified a high prevalence of deletions in CFH-related genes 3 and 1 (delCFHR3-CFHR1) and CFH autoantibodies in these patients with HSCT-TMA. Conversely, CFH autoantibodies were not detected in 18 children undergoing HSCT who did not develop TMA. Our observations suggest that complement alternative pathway dysregulation may be involved in the pathogenesis of post-HSCT TMA. These findings shed light on a novel mechanism of endothelial injury in transplant-TMA and may therefore guide the development of targeted treatment interventions.


Nature Genetics | 2015

Germline mutations in ETV6 are associated with thrombocytopenia, red cell macrocytosis and predisposition to lymphoblastic leukemia

Leila Noetzli; Richard W. Lo; Alisa B. Lee-Sherick; Michael U. Callaghan; Patrizia Noris; Anna Savoia; Madhvi Rajpurkar; Kenneth L. Jones; Katherine Gowan; Carlo L. Balduini; Alessandro Pecci; Chiara Gnan; Daniela De Rocco; Michael Doubek; Ling Li; Lily Lu; Richard Leung; Carolina Landolt-Marticorena; Stephen P. Hunger; Paula G. Heller; Arthur Gutierrez-Hartmann; Liang Xiayuan; Fred G. Pluthero; Jesse W. Rowley; Andrew S. Weyrich; Walter H. A. Kahr; Christopher C. Porter; Jorge Di Paola

Some familial platelet disorders are associated with predisposition to leukemia, myelodysplastic syndrome (MDS) or dyserythropoietic anemia. We identified a family with autosomal dominant thrombocytopenia, high erythrocyte mean corpuscular volume (MCV) and two occurrences of B cell–precursor acute lymphoblastic leukemia (ALL). Whole-exome sequencing identified a heterozygous single-nucleotide change in ETV6 (ets variant 6), c.641C>T, encoding a p.Pro214Leu substitution in the central domain, segregating with thrombocytopenia and elevated MCV. A screen of 23 families with similar phenotypes identified 2 with ETV6 mutations. One family also had a mutation encoding p.Pro214Leu and one individual with ALL. The other family had a c.1252A>G transition producing a p.Arg418Gly substitution in the DNA-binding domain, with alternative splicing and exon skipping. Functional characterization of these mutations showed aberrant cellular localization of mutant and endogenous ETV6, decreased transcriptional repression and altered megakaryocyte maturation. Our findings underscore a key role for ETV6 in platelet formation and leukemia predisposition.


Nature Genetics | 2013

Identification of a rare coding variant in complement 3 associated with age-related macular degeneration

Xiaowei Zhan; David E. Larson; Chaolong Wang; Daniel C. Koboldt; Yuri V. Sergeev; Robert S. Fulton; Lucinda Fulton; Catrina C. Fronick; Kari Branham; Jennifer L. Bragg-Gresham; Goo Jun; Youna Hu; Hyun Min Kang; Dajiang J. Liu; Mohammad Othman; Matthew Brooks; Rinki Ratnapriya; Alexis Boleda; Felix Grassmann; Claudia N. von Strachwitz; Lana M. Olson; Gabriëlle H.S. Buitendijk; Albert Hofman; Cornelia M. van Duijn; Valentina Cipriani; Anthony T. Moore; Humma Shahid; Yingda Jiang; Yvette P. Conley; Denise J. Morgan

Macular degeneration is a common cause of blindness in the elderly. To identify rare coding variants associated with a large increase in risk of age-related macular degeneration (AMD), we sequenced 2,335 cases and 789 controls in 10 candidate loci (57 genes). To increase power, we augmented our control set with ancestry-matched exome-sequenced controls. An analysis of coding variation in 2,268 AMD cases and 2,268 ancestry-matched controls identified 2 large-effect rare variants: previously described p.Arg1210Cys encoded in the CFH gene (case frequency (fcase) = 0.51%; control frequency (fcontrol) = 0.02%; odds ratio (OR) = 23.11) and newly identified p.Lys155Gln encoded in the C3 gene (fcase = 1.06%; fcontrol = 0.39%; OR = 2.68). The variants suggest decreased inhibition of C3 by complement factor H, resulting in increased activation of the alternative complement pathway, as a key component of disease biology.


Biology of Blood and Marrow Transplantation | 2014

Eculizumab Therapy in Children with Severe Hematopoietic Stem Cell Transplantation–Associated Thrombotic Microangiopathy

Sonata Jodele; Tsuyoshi Fukuda; Alexander A. Vinks; Kana Mizuno; Benjamin L. Laskin; Jens Goebel; Bradley P. Dixon; Ashley Teusink; Fred G. Pluthero; Lily Lu; Christoph Licht; Stella M. Davies

We recently observed that dysregulation of the complement system may be involved in the pathogenesis of hematopoietic stem cell transplantation-associated thrombotic microangiopathy (HSCT-TMA). These findings suggest that the complement inhibitor eculizumab could be a therapeutic option for this severe HSCT complication with high mortality. However, the efficacy of eculizumab in children with HSCT-TMA and its dosing requirements are not known. We treated 6 children with severe HSCT-TMA using eculizumab and adjusted the dose to achieve a therapeutic level >99 μg/mL. HSCT-TMA resolved over time in 4 of 6 children after achieving therapeutic eculizumab levels and complete complement blockade, as measured by low total hemolytic complement activity (CH50). To achieve therapeutic drug levels and a clinical response, children with HSCT-TMA required higher doses or more frequent eculizumab infusions than currently recommended for children with atypical hemolytic uremic syndrome. Two critically ill patients failed to reach therapeutic eculizumab levels, even after dose escalation, and subsequently died. Our data indicate that eculizumab may be a therapeutic option for HSCT-TMA, but HSCT patients appear to require higher medication dosing than recommended for other conditions. We also observed that a CH50 level ≤ 4 complement activity enzyme units correlated with therapeutic eculizumab levels and clinical response, and therefore CH50 may be useful to guide eculizumab dosing in HSCT patients as drug level monitoring is not readily available.


The New England Journal of Medicine | 2012

Eculizumab and Refractory Membranoproliferative Glomerulonephritis

Seetha Radhakrishnan; Andrew Lunn; Michael Kirschfink; Paul S. Thorner; Diane Hebert; Valerie Langlois; Fred G. Pluthero; Christoph Licht

This letter to the editor discusses the use of eculizumab in refractory membranoproliferative glomerulonephritis. The response appears to be dramatic.


Blood | 2013

Abnormal megakaryocyte development and platelet function in Nbeal2(-/-) mice.

Walter H. A. Kahr; Richard W. Lo; Ling Li; Fred G. Pluthero; Hilary Christensen; Ran Ni; Nima Vaezzadeh; Cynthia Hawkins; Andrew S. Weyrich; Jorge Di Paola; Carolina Landolt-Marticorena; Peter L. Gross

Gray platelet syndrome (GPS) is an inherited bleeding disorder associated with macrothrombocytopenia and α-granule-deficient platelets. GPS has been linked to loss of function mutations in NEABL2 (neurobeachin-like 2), and we describe here a murine GPS model, the Nbeal2(-/-) mouse. As in GPS, Nbeal2(-/-) mice exhibit splenomegaly, macrothrombocytopenia, and a deficiency of platelet α-granules and their cargo, including von Willebrand factor (VWF), thrombospondin-1, and platelet factor 4. The platelet α-granule membrane protein P-selectin is expressed at 48% of wild-type levels and externalized upon platelet activation. The presence of P-selectin and normal levels of VPS33B and VPS16B in Nbeal2(-/-) platelets suggests that NBEAL2 acts independently of VPS33B/VPS16B at a later stage of α-granule biogenesis. Impaired Nbeal2(-/-) platelet function was shown by flow cytometry, platelet aggregometry, bleeding assays, and intravital imaging of laser-induced arterial thrombus formation. Microscopic analysis detected marked abnormalities in Nbeal2(-/-) bone marrow megakaryocytes, which when cultured showed delayed maturation, decreased survival, decreased ploidy, and developmental abnormalities, including abnormal extracellular distribution of VWF. Our results confirm that α-granule secretion plays a significant role in platelet function, and they also indicate that abnormal α-granule formation in Nbeal2(-/-) mice has deleterious effects on megakaryocyte survival, development, and platelet production.


Blood | 2009

Platelet-associated complement factor H in healthy persons and patients with atypical HUS

Christoph Licht; Fred G. Pluthero; Ling Li; Hilary Christensen; Sandra Habbig; Bernd Hoppe; Denis F. Geary; Peter F. Zipfel; Walter H. A. Kahr

Atypical hemolytic uremic syndrome (aHUS) is associated with complement system dysregulation, and more than 25% of pediatric aHUS cases are linked to mutations in complement factor H (CFH) or CFH autoantibodies. The observation of thrombocytopenia and platelet-rich thrombi in the glomerular microvasculature indicates that platelets are intimately involved in aHUS pathogenesis. It has been reported that a releasable pool of platelet CFH originates from alpha-granules. We observed that platelet CFH can arise from endogenous synthesis in megakaryocytes and that platelets constitutively lacking alpha-granules contain CFH. Electron and high-resolution laser fluorescence confocal microscopy revealed that CFH was present throughout the cytoplasm and on the surface of normal resting platelets with no evident concentration in alpha-granules, lysosomes, or dense granules. Therapeutic plasma transfusion in a CFH-null aHUS patient revealed that circulating platelets take up CFH with similar persistence of CFH in platelets and plasma in vivo. Washed normal platelets were also observed to take up labeled CFH in vitro. Exposure of washed normal platelets to plasma of an aHUS patient with CFH autoantibodies produced partial platelet aggregation or agglutination, which was prevented by preincubation of platelets with purified CFH. This CFH-dependent response did not involve P-selectin mobilization, indicating a complement-induced platelet response distinct from alpha-granule secretion.


Blood | 2012

The VPS33B-binding protein VPS16B is required in megakaryocyte and platelet α-granule biogenesis.

Denisa Urban; Ling Li; Hilary Christensen; Fred G. Pluthero; Shao Zun Chen; Michael Puhacz; Parvesh Garg; Kiran K. Lanka; James J. Cummings; Helmut Krämer; James D. Wasmuth; John Parkinson; Walter H. A. Kahr

Patients with platelet α or dense δ-granule defects have bleeding problems. Although several proteins are known to be required for δ-granule development, less is known about α-granule biogenesis. Our previous work showed that the BEACH protein NBEAL2 and the Sec1/Munc18 protein VPS33B are required for α-granule biogenesis. Using a yeast two-hybrid screen, mass spectrometry, coimmunoprecipitation, and bioinformatics studies, we identified VPS16B as a VPS33B-binding protein. Immunoblotting confirmed VPS16B expression in various human tissues and cells including megakaryocytes and platelets, and also in megakaryocytic Dami cells. Characterization of platelets from a patient with arthrogryposis, renal dysfunction, and cholestasis (ARC) syndrome containing mutations in C14orf133 encoding VPS16B revealed pale-appearing platelets in blood films and electron microscopy revealed a complete absence of α-granules, whereas δ-granules were observed. Soluble and membrane-bound α-granule proteins were reduced or undetectable, suggesting that both releasable and membrane-bound α-granule constituents were absent. Immunofluorescence microscopy of Dami cells stably expressing GFP-VPS16B revealed that similar to VPS33B, GFP-VPS16B colocalized with markers of the trans-Golgi network, late endosomes and α-granules. We conclude that VPS16B, similar to its binding partner VPS33B, is essential for megakaryocyte and platelet α-granule biogenesis.


Blood | 2015

FlnA binding to PACSIN2 F-BAR domain regulates membrane tubulation in megakaryocytes and platelets

Antonija Jurak Begonja; Fred G. Pluthero; Worawit Suphamungmee; Silvia Giannini; Hilary Christensen; Richard Leung; Richard W. Lo; Fumihiko Nakamura; William Lehman; Markus Plomann; Karin M. Hoffmeister; Walter H. A. Kahr; John H. Hartwig; Hervé Falet

Bin-Amphiphysin-Rvs (BAR) and Fes-CIP4 homology BAR (F-BAR) proteins generate tubular membrane invaginations reminiscent of the megakaryocyte (MK) demarcation membrane system (DMS), which provides membranes necessary for future platelets. The F-BAR protein PACSIN2 is one of the most abundant BAR/F-BAR proteins in platelets and the only one reported to interact with the cytoskeletal and scaffold protein filamin A (FlnA), an essential regulator of platelet formation and function. The FlnA-PACSIN2 interaction was therefore investigated in MKs and platelets. PACSIN2 associated with FlnA in human platelets. The interaction required FlnA immunoglobulin-like repeat 20 and the tip of PACSIN2 F-BAR domain and enhanced PACSIN2 F-BAR domain membrane tubulation in vitro. Most human and wild-type mouse platelets had 1 to 2 distinct PACSIN2 foci associated with cell membrane GPIbα, whereas Flna-null platelets had 0 to 4 or more foci. Endogenous PACSIN2 and transfected enhanced green fluorescent protein-PACSIN2 were concentrated in midstage wild-type mouse MKs in a well-defined invagination of the plasma membrane reminiscent of the initiating DMS and dispersed in the absence of FlnA binding. The DMS appeared less well defined, and platelet territories were not readily visualized in Flna-null MKs. We conclude that the FlnA-PACSIN2 interaction regulates membrane tubulation in MKs and platelets and likely contributes to DMS formation.

Collaboration


Dive into the Fred G. Pluthero's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ling Li

University of Toronto

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hervé Falet

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Silvia Giannini

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Terese Jönsson

Brigham and Women's Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge