Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fred G. van Zijderveld is active.

Publication


Featured researches published by Fred G. van Zijderveld.


Journal of Clinical Microbiology | 2007

Molecular Discrimination of Atypical Bovine Spongiform Encephalopathy Strains from a Geographical Region Spanning a Wide Area in Europe

J.G. Jacobs; Jan Langeveld; Anne-Gaëlle Biacabe; Pierluigi Acutis; Mirosław P. Polak; Dolores Gavier-Widén; Anne Buschmann; Maria Caramelli; Cristina Casalone; Maria Mazza; Martin H. Groschup; Jo Hf Erkens; Aart Davidse; Fred G. van Zijderveld; Thierry Baron

ABSTRACT Transmissible spongiform encephalopathy strains can be differentiated by their behavior in bioassays and by molecular analyses of the disease-associated prion protein (PrP) in a posttranslationally transformed conformation (PrPSc). Until recently, isolates from cases of bovine spongiform encephalopathy (BSE) appeared to be very homogeneous. However, a limited number of atypical BSE isolates have recently been identified upon analyses of the disease-associated proteinase K (PK) resistance-associated moiety of PrPSc (PrPres), suggesting the existence of at least two additional BSE PrPres variants. These are defined here as the H type and the L type, according to the higher and lower positions of the nonglycosylated PrPres band in Western blots, respectively, compared to the position of the band in classical BSE (C-type) isolates. These molecular PrPres variants, which originated from six different European countries, were investigated together. In addition to the migration properties and glycosylation profiles (glycoprofiles), the H- and L-type isolates exhibited enhanced PK sensitivities at pH 8 compared to those of the C-type isolates. Moreover, H-type BSE isolates exhibited differences in the binding of antibodies specific for N- and more C-terminal PrP regions and principally contained two aglycosylated PrPres moieties which can both be glycosylated and which is thus indicative of the existence of two PrPres populations or intermediate cleavage sites. These properties appear to be consistent within each BSE type and independent of the geographical origin, suggesting the existence of different BSE strains in cattle. The choice of three antibodies and the application of two pHs during the digestion of brain homogenates provide practical and diverse tools for the discriminative detection of these three molecular BSE types and might assist with the recognition of other variants.


Emerging Infectious Diseases | 2011

Molecular epidemiology of Coxiella burnetii from ruminants in Q fever outbreak, the Netherlands.

H.I.J. Roest; Robin Ruuls; Jeroen J.H.C. Tilburg; Marrigje H. Nabuurs-Franssen; Corné H. W. Klaassen; Piet Vellema; René van den Brom; Daan Dercksen; Willem Wouda; Marcel A.H. Spierenburg; Arco N. van der Spek; Rob Buijs; Albert G. de Boer; Peter Willemsen; Fred G. van Zijderveld

Q fever is a zoonosis caused by the bacterium Coxiella burnetii. One of the largest reported outbreaks of Q fever in humans occurred in the Netherlands starting in 2007; epidemiologic investigations identified small ruminants as the source. To determine the genetic background of C. burnetii in domestic ruminants responsible for the human Q fever outbreak, we genotyped 126 C. burnetii–positive samples from ruminants by using a 10-loci multilocus variable-number tandem-repeat analyses panel and compared them with internationally known genotypes. One unique genotype predominated in dairy goat herds and 1 sheep herd in the human Q fever outbreak area in the south of the Netherlands. On the basis of 4 loci, this genotype is similar to a human genotype from the Netherlands. This finding strengthens the probability that this genotype of C. burnetii is responsible for the human Q fever epidemic in the Netherlands.


BMC Veterinary Research | 2006

Rapid and discriminatory diagnosis of scrapie and BSE in retro-pharyngeal lymph nodes of sheep

Jan Langeveld; J.G. Jacobs; Jo Hf Erkens; Alex Bossers; Fred G. van Zijderveld; Lucien van Keulen

BackgroundDiagnosis based on prion detection in lymph nodes of sheep and goats can improve active surveillance for scrapie and, if it were circulating, for bovine spongiform encephalopathy (BSE). With sizes that allow repetitive testing and a location that is easily accessible at slaughter, retropharyngeal lymph nodes (RLN) are considered suitable organs for testing. Western blotting (WB) of brain homogenates is, in principle, a technique well suited to both detect and discriminate between scrapie and BSE. In this report, WB is developed for rapid diagnosis in RLN and to study biochemical characteristics of PrPres.ResultsOptimal PrPres detection in RLN by WB was achieved by proper tissue processing, antibody choice and inclusion of a step for PrPresconcentration. The analyses were performed on three different sheep sources. Firstly, in a study with preclinical scrapie cases, WB of RLN from infected sheep of VRQ/VRQ genotype – VRQ represents, respectively, polymorphic PrP amino acids 136, 154, and 171 – allowed a diagnosis 14 mo earlier compared to WB of brain stem. Secondly, samples collected from sheep with confirmed scrapie in the course of passive and active surveillance programmes in the period 2002–2003 yielded positive results depending on genotype: all sheep with genotypes ARH/VRQ, VRQ/VRQ, and ARQ/VRQ scored positive for PrPres, but ARQ/ARQ and ARR/VRQ were not all positive. Thirdly, in an experimental BSE study, detection of PrPres in all 11 ARQ/ARQ sheep, including 7 preclinical cases, was possible. In all instances, WB and IHC were almost as sensitive. Moreover, BSE infection could be discriminated from scrapie infection by faster electrophoretic migration of the PrPres bands. Using dual antibody staining with selected monoclonal antibodies like 12B2 and L42, these differences in migration could be employed for an unequivocal differentiation between BSE and scrapie. With respect to glycosylation of PrPres, BSE cases exhibited a greater diglycosylated fraction than scrapie cases. Furthermore, a slight time dependent increase of diglycosylated PrPres was noted between individual sheep, which was remarkable in that it occurred in both scrapie and BSE study.ConclusionThe present data indicate that, used in conjunction with testing in brain, WB of RLN can be a sensitive tool for improving surveillance of scrapie and BSE, allowing early detection of BSE and scrapie and thereby ensuring safer sheep and goat products.


PLOS ONE | 2012

Q fever in pregnant goats: pathogenesis and excretion of Coxiella burnetii.

Hendrik-Jan Roest; Betty van Gelderen; Annemieke Dinkla; Dimitrios Frangoulidis; Fred G. van Zijderveld; J.M.J. Rebel; Lucien van Keulen

Coxiella burnetii is an intracellular bacterial pathogen that causes Q fever. Infected pregnant goats are a major source of human infection. However, the tissue dissemination and excretion pathway of the pathogen in goats are still poorly understood. To better understand Q fever pathogenesis, we inoculated groups of pregnant goats via the intranasal route with a recent Dutch outbreak C. burnetii isolate. Tissue dissemination and excretion of the pathogen were followed for up to 95 days after parturition. Goats were successfully infected via the intranasal route. PCR and immunohistochemistry showed strong tropism of C. burnetii towards the placenta at two to four weeks after inoculation. Bacterial replication seemed to occur predominantly in the trophoblasts of the placenta and not in other organs of goats and kids. The amount of C. burnetii DNA in the organs of goats and kids increased towards parturition. After parturition it decreased to undetectable levels: after 81 days post-parturition in goats and after 28 days post-parturition in kids. Infected goats gave birth to live or dead kids. High numbers of C. burnetii were excreted during abortion, but also during parturition of liveborn kids. C. burnetii was not detected in faeces or vaginal mucus before parturition. Our results are the first to demonstrate that pregnant goats can be infected via the intranasal route. C. burnetii has a strong tropism for the trophoblasts of the placenta and is not excreted before parturition; pathogen excretion occurs during birth of dead as well as healthy animals. Besides abortions, normal deliveries in C. burnetii-infected goats should be considered as a major zoonotic risk for Q fever in humans.


Veterinary Research | 2008

TSE pathogenesis in cattle and sheep

Lucien van Keulen; Alex Bossers; Fred G. van Zijderveld

Many studies have been undertaken in rodents to study the pathogenesis of transmissible spongiform encephalopathies (TSE). Only a few studies have focused on the pathogenesis of bovine spongiform encephalopathy (BSE) and scrapie in their natural hosts. In this review, we summarize the most recent insights into the pathogenesis of BSE and scrapie starting from the initial uptake of TSE agents and crossing of the gut epithelium. Following replication in the gut-associated lymphoid tissues (GALT), TSE agents spread to the enteric nervous system (ENS) of the gut. Infection is then carried through the efferent fibers of the post-ganglionic neurons of the parasympathetic and sympathetic nervous system to the pre-ganglionic neurons in the medulla oblongata of the brain and the thoracic segments of the spinal cord. The differences between the pathogenesis of BSE in cattle and scrapie in sheep are discussed as well as the possible existence of additional pathogenetic routes.


Journal of Virology | 2006

Inhibition of Protease-Resistant Prion Protein Formation in a Transformed Deer Cell Line Infected with Chronic Wasting Disease

Gregory J. Raymond; Emily A. Olsen; Kil Sun Lee; Lynne D. Raymond; P.Kruger Bryant; Gerald S. Baron; Winslow S. Caughey; David A. Kocisko; Linda E. McHolland; Cynthia Favara; Jan Langeveld; Fred G. van Zijderveld; Richard T. Mayer; Michael W. Miller; Elizabeth S. Williams; Byron Caughey

ABSTRACT Chronic wasting disease (CWD) is an emerging transmissible spongiform encephalopathy (prion disease) of North American cervids, i.e., mule deer, white-tailed deer, and elk (wapiti). To facilitate in vitro studies of CWD, we have developed a transformed deer cell line that is persistently infected with CWD. Primary cultures derived from uninfected mule deer brain tissue were transformed by transfection with a plasmid containing the simian virus 40 genome. A transformed cell line (MDB) was exposed to microsomes prepared from the brainstem of a CWD-affected mule deer. CWD-associated, protease-resistant prion protein (PrPCWD) was used as an indicator of CWD infection. Although no PrPCWD was detected in any of these cultures after two passes, dilution cloning of cells yielded one PrPCWD-positive clone out of 51. This clone, designated MDBCWD, has maintained stable PrPCWD production through 32 serial passes thus far. A second round of dilution cloning yielded 20 PrPCWD-positive subclones out of 30, one of which was designated MDBCWD2. The MDBCWD2 cell line was positive for fibronectin and negative for microtubule-associated protein 2 (a neuronal marker) and glial fibrillary acidic protein (an activated astrocyte marker), consistent with derivation from brain fibroblasts (e.g., meningeal fibroblasts). Two inhibitors of rodent scrapie protease-resistant PrP accumulation, pentosan polysulfate and a porphyrin compound, indium (III) meso-tetra(4-sulfonatophenyl)porphine chloride, potently blocked PrPCWD accumulation in MDBCWD cells. This demonstrates the utility of these cells in a rapid in vitro screening assay for PrPCWD inhibitors and suggests that these compounds have potential to be active against CWD in vivo.


BMC Veterinary Research | 2010

Scrapie prevalence in sheep of susceptible genotype is declining in a population subject to breeding for resistance.

T.H.J. Hagenaars; Marielle B Melchior; Alex Bossers; Aart Davidse; B. Engel; Fred G. van Zijderveld

BackgroundSusceptibility of sheep to scrapie infection is known to be modulated by the PrP genotype of the animal. In the Netherlands an ambitious scrapie control programme was started in 1998, based on genetic selection of animals for breeding. From 2002 onwards EU regulations required intensive active scrapie surveillance as well as certain control measures in affected flocks.Here we analyze the data on genotype frequencies and scrapie prevalence in the Dutch sheep population obtained from both surveillance and affected flocks, to identify temporal trends. We also estimate the genotype-specific relative risks to become a detected scrapie case.ResultsWe find that the breeding programme has produced a steady increase in the level of genetic scrapie resistance in the Dutch sheep population. We also find that a significant decline in the prevalence of scrapie in tested animals has occurred a number of years after the start of the breeding programme. Most importantly, the estimated scrapie prevalence level per head of susceptible genotype is also declining significantly, indicating that selective breeding causes a population effect.ConclusionsThe Dutch scrapie control programme has produced a steady rise in genetic resistance levels in recent years. A recent decline in the scrapie prevalence per tested sheep of susceptible prion protein genotype indicates that selective breeding causes the desired population effect.


Emerging Infectious Diseases | 2013

Search for Possible Additional Reservoirs for Human Q Fever, the Netherlands

H.I.J. Roest; Conny B. van Solt; Jeroen J.H.C. Tilburg; Corné H. W. Klaassen; Emiel K. Hovius; Frank T.F. Roest; Piet Vellema; René van den Brom; Fred G. van Zijderveld

To the Editor: Q fever is a zoonosis caused by the bacterium Coxiella burnetii. The Q fever outbreak in the Netherlands affected ≈4,000 humans during 2007–2010 (1). In this outbreak, 1 genotype of C. burnetii appeared to be responsible for abortions in small ruminants and for clinical disease in humans (2,3). However, little is known about the outbreak genotype and the prevalence of C. burnetii in possible additional reservoirs for human Q fever (i.e., cats, dogs, horses, sheep, and cattle) in the Netherlands. We aimed to search for possible additional reservoirs for human Q fever in the Netherlands. Placentas from 15 cats, 54 dogs, and 31 horses were collected in 2011 at 5 veterinary practices. Placentas were collected by targeted sampling at breeding facilities and during parturition with veterinary assistance. In addition, 27 ovine, 11 caprine, 16 porcine, 8 equine, and 139 bovine placentas (originating from aborting animals from throughout the Netherlands that were submitted in 2011 to investigate the abortion cause) were included in the study. Samples were stored at −20°C before testing. DNA was extracted from the allantochorion of the placenta and analyzed as described (2). Samples with sufficient DNA load (cycle threshold [Ct] value <32) were typed by using 2 multilocus variable-number tandem-repeat analyses (MLVA) genotyping methods (MLVA-12 and MLVA-6), and the multispacer sequence typing method (3–5). Two C. burnetii strains from the Netherlands representing the outbreak genotype (X09003262, 3345937) and the Nine Mile RSA 493 were included as reference. For prevalence calculations, the Netherlands was divided in a southern part, comprising the Q fever hot spot area of notified cases in humans and small ruminants during the 2007–2010 epidemic (1,6), and a northern part, comprising the rest of the country. C. burnetii DNA was not detected in placentas from cats, goats, or pigs. C. burnetii DNA was detected in 4 (7% [95% CI 0.4–14.4]) of 54 canine placentas; 3 from the north and 1 from the south of the Netherlands. C. burnetii DNA was detected in 3 (8% [95% CI 0.0–16.1]) of 39 equine placentas, all from the north of the country, without known abortion history. C. burnetii DNA was detected in 7 (26% [95% CI 9.4–42.5]) of 27 ovine and in 33 (24% [95% CI 16.7–30.8]) of 139 bovine placentas. The prevalence of C. burnetii DNA–positive ovine and bovine placentas from the north and the south did not differ significantly. The C. burnetii DNA load in the placentas from dogs (Ct value 37.4–38.0) and horses (Ct value 35.4–37.4) was too low to be suitable for genotyping. Typing of 1 positive sheep sample resulted in an incomplete genotype, which is related to the outbreak genotype (sheep 192, Figure). Seven of the 33 C. burnetii DNA–positive bovine placentas were suitable for typing. One sample had a genotype similar to the outbreak genotype (2,3). Six other samples revealed a (partial) genotype related to bovine genotypes from the Netherlands (2,5,7), including a novel one. MLVA-6 and multispacer sequence typing results were consistent with the MLVA-12 results (Figure). Figure Phylogenetic tree of the genotypes of Coxiella burnetii from the samples of this study based on multilocus variable-number tandem-repeat analyses (MLVA) including 12 loci (MLVA-12). Repeats per locus are shown, and open spots indicate missing values. ... Results give no indication for major reservoirs of C. burnetii in cats, goats, and pigs in the Netherlands in 2011. However, the low numbers of placentas may have biased the results. Dogs and horses should be considered as reservoirs for C. burnetii. The detection of C. burnetii DNA–positive placentas in dogs and horses in the northern part of the country indicates the presence of a true reservoir rather than a spillover effect from the contaminated environment in the south. This observation is consistent with a reported seroprevalence of 13% in dogs in the Netherlands in 1992 (1). Until now, horses had been discussed as a risk factor in the Q fever outbreak in the Netherlands (8). Prevalence data from sheep and cattle suggest that C. burnetii is present in placentas in 25% of the abortion cases in these species. Presence of the outbreak genotype of C. burnetii in sheep has been observed (2,5), indicating sheep are a reservoir for Q fever in humans. Genotyping data show a distinct genotype in 6 of the 7 cattle samples in accordance with previous work (2,5,7). However, the outbreak genotype was detected in 1 sample from a cow. Whether this is an incidental finding or the first observation of the outbreak genotype being transferred to the cattle population is not clear. If the latter, exposure to cattle also possibly might become a risk factor for human Q fever, in addition to goats and sheep.


BMC Veterinary Research | 2010

Eradication of scrapie with selective breeding: are we nearly there?

Marielle B Melchior; J.J. Windig; T.H.J. Hagenaars; Alex Bossers; Aart Davidse; Fred G. van Zijderveld

BackgroundFollowing EU decision 2003/100/EC Member States have recently implemented sheep breeding programmes to reduce the prevalence of sheep with TSE susceptible prion genotypes. The present paper investigates the progress of the breeding programme in the Netherlands. The PrP genotype frequencies were monitored through time using two sets of random samples: one set covers the years 2005 to 2008 and is taken from national surveillance programme; the other is taken from 168 random sheep farms in 2007. The data reveal that although the level of compliance to the breeding programme has been high, the frequency of susceptible genotypes varies substantially between farms. The 168 sheep farms are a subset of 689 farms participating in a postal survey inquiring about management and breeding strategies. This survey aimed to identify how much these strategies varied between farms, in order to inform assessment of the expected future progress towards eradication of classical scrapie.ResultsOn the one hand, we found that compliance to the national breeding program has been high, and the frequency of resistant genotypes is expected to increase further in the next few years. On the other hand, we observed a large variation in prevalence of the scrapie resistant PrP genotype ARR between farms, implicating a large variation of genetic resistance between farms. Substantial between-flock differences in management and breeding strategies were found in the postal survey, suggesting considerable variation in risk of scrapie transmission between farms.ConclusionsOur results show that although there has been a good progress in the breeding for scrapie resistance and the average farm-level scrapie susceptibility in the Netherlands has been significantly reduced, still a considerable proportion of farms contain high frequencies of susceptible genotypes in their sheep population. Since 2007 the breeding for genetic resistance is voluntarily again, and participation to selective breeding can decrease as a result of this. This, together with the patterns of direct and indirect contact between sheep farms, might present a challenge of the aim of scrapie eradication. Communication to sheep owners of the effect of the breeding programme thus far, and of the prospects for classical scrapie eradication in The Netherlands might be essential for obtaining useful levels of participation to the voluntary continuation of the breeding programme.


Veterinary Research | 2013

Q fever in pregnant goats: humoral and cellular immune responses

H.I.J. Roest; Jacob Post; Betty van Gelderen; Fred G. van Zijderveld; J.M.J. Rebel

Q fever is a zoonosis caused by the intracellular bacterium Coxiella burnetii. Both humoral and cellular immunity are important in the host defence against intracellular bacteria. Little is known about the immune response to C. burnetii infections in domestic ruminants even though these species are the major source of Q fever in humans. To investigate the goat’s immune response we inoculated groups of pregnant goats via inhalation with a Dutch outbreak isolate of C. burnetii. All animals were successfully infected. Phase 1 and Phase 2 IgM- and IgG-specific antibodies were measured. Cellular immune responses were investigated by interferon-gamma, enzyme-linked immunosorbent spot test (IFN-γ Elispot), lymphocyte proliferation test (LPT) and systemic cytokines. After two weeks post inoculation (wpi), a strong anti-C. burnetii Phase 2 IgM and IgG antibody response was observed while the increase in IgM anti-Phase 1 antibodies was less pronounced. IgG anti-Phase 1 antibodies started to rise at 6 wpi. Cellular immune responses were observed after parturition. Our results demonstrated humoral and cellular immune responses to C. burnetii infection in pregnant goats. Cell-mediated immune responses did not differ enough to distinguish between Coxiella-infected and non-infected pregnant animals, whereas a strong-phase specific antibody response is detected after 2 wpi. This humoral immune response may be useful in the early detection of C. burnetii-infected pregnant goats.

Collaboration


Dive into the Fred G. van Zijderveld's collaboration.

Top Co-Authors

Avatar

Alex Bossers

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Jan Langeveld

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Aart Davidse

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Lucien van Keulen

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

J.G. Jacobs

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Alan Rigter

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Douwe Bakker

VU University Amsterdam

View shared research outputs
Top Co-Authors

Avatar

H.I.J. Roest

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Jo Hf Erkens

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Marielle B Melchior

Wageningen University and Research Centre

View shared research outputs
Researchain Logo
Decentralizing Knowledge