Fred Nicolls
University of Cape Town
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Fred Nicolls.
european conference on computer vision | 2008
Stephen Milborrow; Fred Nicolls
We make some simple extensions to the Active Shape Model of Cootes et al. [4], and use it to locate features in frontal views of upright faces. We show on independent test data that with the extensions the Active Shape Model compares favorably with more sophisticated methods. The extensions are (i) fitting more landmarks than are actually needed (ii) selectively using two- instead of one-dimensional landmark templates (iii) adding noise to the training set (iv) relaxing the shape model where advantageous (v) trimming covariance matrices by setting most entries to zero, and (vi) stacking two Active Shape Models in series.
european conference on computer vision | 2006
Keith Forbes; Fred Nicolls; Gerhard de Jager; Anthon Voigt
Two planar mirrors are positioned to show five views of an object, and snapshots are captured from different viewpoints. We present closed form solutions for calculating the focal length, principal point, mirror and camera poses directly from the silhouette outlines of the object and its reflections. In the noisy case, these equations are used to form initial parameter estimates that are refined using iterative minimisation. The self-calibration allows the visual cones from each silhouette to be specified in a common reference frame so that the visual hull can be constructed. The proposed setup provides a simple method for creating 3D multimedia content that does not rely on specialised equipment. Experimental results demonstrate the reconstruction of a toy horse and a locust from real images. Synthetic images are used to quantify the sensitivity of the self-calibration to quantisation noise. In terms of the silhouette calibration ratio, degradation in silhouette quality has a greater effect on silhouette set consistency than computed calibration parameters.
Stereotactic and Functional Neurosurgery | 2013
Bruce S Spottiswoode; D.J. van den Heever; Y. Chang; S. Engelhardt; S. Du Plessis; Fred Nicolls; H.B. Hartzenberg; A. Gretschel
Background: Neurosurgeons regularly plan their surgery using magnetic resonance imaging (MRI) images, which may show a clear distinction between the area to be resected and the surrounding healthy brain tissue depending on the nature of the pathology. However, this distinction is often unclear with the naked eye during the surgical intervention, and it may be difficult to infer depth and an accurate volumetric interpretation from a series of MRI image slices. Objectives: In this work, MRI data are used to create affordable patient-specific 3-dimensional (3D) scale models of the brain which clearly indicate the location and extent of a tumour relative to brain surface features and important adjacent structures. Methods: This is achieved using custom software and rapid prototyping. In addition, functionally eloquent areas identified using functional MRI are integrated into the 3D models. Results: Preliminary in vivo results are presented for 2 patients. The accuracy of the technique was estimated both theoretically and by printing a geometrical phantom, with mean dimensional errors of less than 0.5 mm observed. Conclusions: This may provide a practical and cost-effective tool which can be used for training, and during neurosurgical planning and intervention.
Journal of Sports Sciences | 2012
Sharief Hendricks; David Karpul; Fred Nicolls; Mike Lambert
Abstract The velocity and acceleration at which the ball-carrier or tackler enters the tackle may contribute to winning the contest and prevailing injury free. Velocity and acceleration have been quantified in controlled settings, whereas in match-play it has been subjectively described. The purpose of this study was to determine the velocity and acceleration of the ball-carrier and tackler before contact during match-play in three competitions (Super 14, Varsity Cup, and Under-19 Currie Cup). Using a two-dimensional scaled version of the field, the velocity and acceleration of the ball-carrier and tackler were measured at every 0.1 s to contact for 0.5 s. For front-on tackles, a significant difference (P < 0.05) between the ball-carrier (4.6 ± 1 m · s–1) and tackler (7.1 ± 3.5 m · s–1) was found at the 0.5 s time to contact interval in the Varsity Cup. For side-on tackles, differences between the two opposing players were found at 0.5 s (ball-carrier: 4.6 ± 1.7 m · s–1; tackler: 3.1 ± 1.2 m · s–1) and 0.4 s (ball-carrier: 6.3 ± 2.3 m · s–1; tackler: 3.7 ± 1.6 m · s–1) at Under-19 level. After 0.4 s, no significant differences (P > 0.05) were evident. Also, the ball-carriers velocity over the 0.5 s was relatively stable compared with that of the tackler. Results suggest that tacklers adjust their velocity to reach a suitable relative velocity before making contact with the ball-carrier.
international conference on acoustics, speech, and signal processing | 2001
Fred Nicolls; G. de Jager
The uniformly most powerful invariant (UMPI) test is derived for detecting a target with unknown location in a noise sequence. This test has the property that for each possible target location it has the greatest power of all tests which are invariant to cyclic permutations of the observations. The test is compared to the generalised likelihood ratio test (GLRT), which is commonly used as a solution to this detection problem. Monte-Carlo simulations show that the powers of the two tests are comparable, thereby justifying near-optimality of the GLRT.
Ultramicroscopy | 1997
Fred Nicolls; G. de Jager; B.T. Sewell
Abstract This work outlines the development of a general imaging model for use in autofocus, astigmatism correction, and resolution analysis. The model is based on the modulation transfer function of the system in the presence of aberrations, in particular, defocus. The signals used are related to the ratios of the Fourier transforms of images captured under different operating conditions. Methods are developed for working with these signals in a consistent manner. The model described is then applied to the problem of autofocus. A fairly general autofocus algorithm is presented and results given which reflect the predictive properties of this model. The imaging system used for the generation of results was a scanning electron microscope (SEM), although the conclusions should be valid across a far wider range of instruments. It is, however, the specific requirements of the SEM that make the generalisation presented here particularly useful. We have, therefore, confined our investigation to SEM.
Signal Processing | 2007
Fred Nicolls; Gerhard de Jager
An optimal test does not exist for the problem of detecting a known target with unknown location in additive Gaussian noise. A common solution uses a generalised likelihood ratio testing (GLRT) formalism, where a maximum likelihood estimate of the unknown location parameter is used in a likelihood ratio test. The performance of this test is commonly assessed by comparing it to the ideal matched filter, which assumes the target location known in advance. This comparison is of limited utility, however, since the fact that the location is unknown has a significant effect on the detectability of the target. We demonstrate that a uniformly most powerful invariant (UMPI) optimal test exists for a specific class of unknown target location problems, where observations are discrete and shifts are defined circularly. Since this approach explicitly models the location as unknown, an assessment of the suboptimality of competing tests becomes meaningful. It is shown that for certain examples in this class the GLRT performance is negligibly different from that of the optimal test.
Proceedings of SPIE | 2014
Jason P. de Villiers; Robert Jermy; Fred Nicolls
This paper presents a system to determine the photogrammetric parameters of a camera. The lens distortion, focal length and camera six degree of freedom (DOF) position are calculated. The system caters for cameras of different sensitivity spectra and fields of view without any mechanical modifications. The distortion characterization, a variant of Browns classic plumb line method, allows many radial and tangential distortion coefficients and finds the optimal principal point. Typical values are 5 radial and 3 tangential coefficients. These parameters are determined stably and demonstrably produce superior results to low order models despite popular and prevalent misconceptions to the contrary. The system produces coefficients to model both the distorted to undistorted pixel coordinate transformation (e.g. for target designation) and the inverse transformation (e.g. for image stitching and fusion) allowing deterministic rates far exceeding real time. The focal length is determined to minimise the error in absolute photogrammetric positional measurement for both multi camera systems or monocular (e.g. helmet tracker) systems. The system determines the 6 DOF position of the camera in a chosen coordinate system. It can also determine the 6 DOF offset of the camera relative to its mechanical mount. This allows faulty cameras to be replaced without requiring a recalibration of the entire system (such as an aircraft cockpit). Results from two simple applications of the calibration results are presented: stitching and fusion of the images from a dual-band visual/ LWIR camera array, and a simple laboratory optical helmet tracker.
Proceedings of SPIE | 2011
Asheer K. Bachoo; Francois P. J. le Roux; Fred Nicolls
Optical (visual) tracking is an important research area in computer vision with a wide range of useful and critical applications in defence and industry. The tracking of targets that pose a threat or potential threat to a countrys assets and resources is a critical component in defence and security. In order to complement radar sensing applications, an optical tracker provides additional functions such as target detection, target identification and intent detection at the visual level. A tracker for the maritime environment is an optical system that performs the automatic tracking of an above water target. Ideally, a track of the target is required for as long as is possible. Some examples of targets include boats, yachts, ships, jet-skis and aircraft. A number of factors mitigate the performance of such a system - change in target appearance, target occlusions, platform vibration and scintillation in the atmosphere are some common examples. We present the implementation of a firstgeneration system that is robust to platform vibration, target appearance changes and short-term occlusions. The optical tracker is developed using a particle filter and an appearance model that is updated online. The system achieves real-time tracking through the use of non-specialized computer hardware. Promising results are presented for a number of real-world videos captured during field trials.
computer vision and pattern recognition | 2010
Fred Nicolls; Philip H. S. Torr
Graph cuts have proven useful for image segmentation and for volumetric reconstruction in multiple view stereo. However, solutions are biased: the cost function tends to favour either a short boundary (in 2D) or a boundary with a small area (in 3D). This bias can be avoided by instead minimising the cut ratio, which normalises the cost by a measure of the boundary size. This paper uses ideas from discrete differential geometry to develop a linear programming formulation for finding a minimum ratio cut in arbitrary dimension, which allows constraints on the solution to be specified in a natural manner, and which admits an efficient and globally optimal solution. Results are shown for 2D segmentation and for 3D volumetric reconstruction.