Frederic A. L. Mauguiere
University of Bristol
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Frederic A. L. Mauguiere.
Chemical Physics Letters | 2014
Frederic A. L. Mauguiere; Peter William Collins; Gregory S. Ezra; Stavros C. Farantos; Stephen Wiggins
Abstract We provide a dynamical interpretation of the recently identified ‘roaming’ mechanism for molecular dissociation reactions in terms of geometrical structures in phase space. These are NHIMs (Normally Hyperbolic Invariant Manifolds) and their stable/unstable manifolds that define transition states for ion–molecule association or dissociation reactions. The associated dividing surfaces rigorously define a roaming region of phase space, in which both reactive and non reactive trajectories can be trapped for arbitrarily long times.
Journal of Chemical Physics | 2014
Frederic A. L. Mauguiere; Peter William Collins; Gregory S. Ezra; Stavros C. Farantos; Stephen Wiggins
A model Hamiltonian for the reaction CH4(+) -> CH3(+) + H, parametrized to exhibit either early or late inner transition states, is employed to investigate the dynamical characteristics of the roaming mechanism. Tight/loose transition states and conventional/roaming reaction pathways are identified in terms of time-invariant objects in phase space. These are dividing surfaces associated with normally hyperbolic invariant manifolds (NHIMs). For systems with two degrees of freedom NHIMS are unstable periodic orbits which, in conjunction with their stable and unstable manifolds, unambiguously define the (locally) non-recrossing dividing surfaces assumed in statistical theories of reaction rates. By constructing periodic orbit continuation/bifurcation diagrams for two values of the potential function parameter corresponding to late and early transition states, respectively, and using the total energy as another parameter, we dynamically assign different regions of phase space to reactants and products as well as to conventional and roaming reaction pathways. The classical dynamics of the system are investigated by uniformly sampling trajectory initial conditions on the dividing surfaces. Trajectories are classified into four different categories: direct reactive and non-reactive trajectories, which lead to the formation of molecular and radical products respectively, and roaming reactive and non-reactive orbiting trajectories, which represent alternative pathways to form molecular and radical products. By analysing gap time distributions at several energies, we demonstrate that the phase space structure of the roaming region, which is strongly influenced by nonlinear resonances between the two degrees of freedom, results in nonexponential (nonstatistical) decay.
Theoretical Chemistry Accounts | 2014
Frederic A. L. Mauguiere; Peter William Collins; Gregory S. Ezra; Stavros C. Farantos; Stephen Wiggins
Abstract A reduced two-dimensional model is used to study ketene isomerization reaction. In light of recent results by Ulusoy et al. (J Phys Chem A 117, 7553, 2013), the present work focuses on the generalization of the roaming mechanism to the ketene isomerization reaction by applying our phase space approach previously used to elucidate the roaming phenomenon in ion–molecule reactions. Roaming is again found be associated with the trapping of trajectories in a phase space region between two dividing surfaces; trajectories are classified as reactive or nonreactive, and are further naturally classified as direct or nondirect (roaming). The latter long-lived trajectories are trapped in the region of nonlinear mechanical resonances, which in turn define alternative reaction pathways in phase space. It is demonstrated that resonances associated with periodic orbits provide a dynamical explanation of the quantum mechanical resonances found in the isomerization rate constant calculations by Gezelter and Miller (J Chem Phys 103, 7868–7876, 1995). Evidence of the trapping of trajectories by ‘sticky’ resonant periodic orbits is provided by plotting Poincaré surfaces of section, and a gap time analysis is carried out in order to investigate the statistical assumption inherent in transition state theory for ketene isomerization.
Journal of Chemical Physics | 2013
Frederic A. L. Mauguiere; Peter R C Collins; Gregory S. Ezra; Stephen Wiggins
We investigate the fragmentation dynamics of an atomic chain under tensile stress. We have classified the location, stability type (indices), and energy of all equilibria for the general n-particle chain, and have highlighted the importance of saddle points with index >1. We show that for an n = 2-particle chain under tensile stress the index 2 saddle plays a central role in organizing the dynamics. We apply normal form theory to analyze phase space structure and dynamics in a neighborhood of the index 2 saddle. We define a phase dividing surface (DS) that enables us to classify trajectories passing through a neighborhood of the saddle point using the values of the integrals associated with the normal form. We also generalize our definition of the dividing surface and define an extended dividing surface (EDS), which is used to sample and classify all trajectories that pass through a phase space neighborhood of the index 2 saddle at total energies less than that of the saddle. Classical trajectory simulations are used to study fragmentation patterns for the n = 2 chain under tension. That is, we investigate the relative probability for breaking one bond versus concerted fission of several (two, in this case) bonds. Initial conditions for trajectories are obtained by sampling the EDS at constant energy. We sample trajectories at fixed energies both above and below the energy of the saddle. The fate of trajectories (single versus multiple bond breakage) is explored as a function of the location of the initial condition on the EDS, and a connection made to the work of Chesnavich on collision-induced dissociation. A significant finding is that we can readily identify trajectories that exhibit bond healing. Such trajectories pass outside the nominal (index 1) transition state for single bond dissociation, but return to the potential well region, possibly several times, before ultimately dissociating.
Journal of Chemical Physics | 2016
Frederic A. L. Mauguiere; Peter William Collins; Zeb C. Kramer; Barry K. Carpenter; Gregory S. Ezra; Stavros C. Farantos; Stephen Wiggins
We examine the phase space structures that govern reaction dynamics in the absence of critical points on the potential energy surface. We show that in the vicinity of hyperbolic invariant tori, it is possible to define phase space dividing surfaces that are analogous to the dividing surfaces governing transition from reactants to products near a critical point of the potential energy surface. We investigate the problem of capture of an atom by a diatomic molecule and show that a normally hyperbolic invariant manifold exists at large atom-diatom distances, away from any critical points on the potential. This normally hyperbolic invariant manifold is the anchor for the construction of a dividing surface in phase space, which defines the outer or loose transition state governing capture dynamics. We present an algorithm for sampling an approximate capture dividing surface, and apply our methods to the recombination of the ozone molecule. We treat both 2 and 3 degrees of freedom models with zero total angular momentum. We have located the normally hyperbolic invariant manifold from which the orbiting (outer) transition state is constructed. This forms the basis for our analysis of trajectories for ozone in general, but with particular emphasis on the roaming trajectories.
Annual Review of Physical Chemistry | 2017
Frederic A. L. Mauguiere; Peter William Collins; Zeb C. Kramer; Barry K. Carpenter; Gregory S. Ezra; Stavros C. Farantos; Stephen Wiggins
In this review we discuss the recently described roaming mechanism for chemical reactions from the point of view of nonlinear dynamical systems in phase space. The recognition of the roaming phenomenon shows the need for further developments in our fundamental understanding of basic reaction dynamics, as is made clear by considering some questions that cut across most studies of roaming: Is the dynamics statistical? Can transition state theory be applied to estimate roaming reaction rates? What role do saddle points on the potential energy surface play in explaining the behavior of roaming trajectories? How do we construct a dividing surface that is appropriate for describing the transformation from reactants to products for roaming trajectories? How should we define the roaming region? We show that the phase space perspective on reaction dynamics provides the setting in which these questions can be properly framed and answered. We illustrate these ideas by considering photodissociation of formaldehyde. The phase-space formulation allows an unambiguous description of all possible reactive events, which also allows us to uncover the phase space mechanism that explains which trajectories roam, as opposed to evolving toward a different reactive event.
Journal of Physical Chemistry A | 2010
Frederic A. L. Mauguiere; M. Rey; Vladimir G. Tyuterev; Jaime Suarez; Stavros C. Farantos
Theoretical predictions and assignment of highly excited vibrational states and their organization is one of the most important challenges in molecular spectroscopy. A systematic procedure to investigate such problems is locating the principal families of periodic orbits that emanate from the stationary points of the molecule and then following their evolution with the total energy. This results in constructing continuation/bifurcation diagrams that assist in locating the critical bifurcation energies and to discover new types of vibrational modes. Another parameter that may influence the dynamics of a molecule is isotopic mass substitution. In this article, we investigate the effect of symmetry breaking by isotopic mass substitution of triatomic molecules with C(2v) symmetry in classical and quantum dynamics. Sulfur dioxide and water molecules in their ground electronic state are studied by employing accurate potential energy surfaces. Continuation/bifurcation diagrams of periodic orbits are constructed by varying the energy and the mass of one oxygen atom of sulfur dioxide and one hydrogen atom of a water molecule. The transition from normal-to-local mode vibrations is studied in terms of a pitchfork to a center-saddle elementary bifurcation of periodic orbits. The results presented in this article aim to help the assignment of experimentally obtained spectra.
Journal of Physical Chemistry Letters | 2015
Frederic A. L. Mauguiere; Peter R C Collins; Zeb C. Kramer; Barry K. Carpenter; Gregory S. Ezra; Stavros C. Farantos; Stephen Wiggins
International Journal of Bifurcation and Chaos | 2013
Frederic A. L. Mauguiere; Peter William Collins; Gregory S. Ezra; Stephen Wiggins
Journal of Chemical Physics | 2011
Frederic A. L. Mauguiere; Stavros C. Farantos; Jaime Suarez; Reinhard Schinke