Frédéric Choulet
Institut national de la recherche agronomique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Frédéric Choulet.
Science | 2008
Etienne Paux; Pierre Sourdille; Jérôme Salse; Cyrille Saintenac; Frédéric Choulet; Philippe Leroy; Abraham B. Korol; Monika Michalak; Shahryar F. Kianian; Wolfgang Spielmeyer; Evans S. Lagudah; Daryl J. Somers; Andrzej Kilian; Michael Alaux; Sonia Vautrin; Hélène Bergès; Kellye Eversole; R. Appels; Jan Safar; Hana Šimková; Jaroslav Dolezel; M. Bernard; Catherine Feuillet
As the staple food for 35% of the worlds population, wheat is one of the most important crop species. To date, sequence-based tools to accelerate wheat improvement are lacking. As part of the international effort to sequence the 17–billion–base-pair hexaploid bread wheat genome (2n = 6x = 42 chromosomes), we constructed a bacterial artificial chromosome (BAC)–based integrated physical map of the largest chromosome, 3B, that alone is 995 megabases. A chromosome-specific BAC library was used to assemble 82% of the chromosome into 1036 contigs that were anchored with 1443 molecular markers, providing a major resource for genetic and genomic studies. This physical map establishes a template for the remaining wheat chromosomes and demonstrates the feasibility of constructing physical maps in large, complex, polyploid genomes with a chromosome-based approach.
Science | 2014
Frédéric Choulet; Adriana Alberti; Sébastien Theil; Natasha Glover; Valérie Barbe; Josquin Daron; Lise Pingault; Pierre Sourdille; Arnaud Couloux; Etienne Paux; Philippe Leroy; Sophie Mangenot; Nicolas Guilhot; Jacques Le Gouis; François Balfourier; Michael Alaux; Véronique Jamilloux; Julie Poulain; Céline Durand; Arnaud Bellec; Christine Gaspin; Jan Safar; Jaroslav Dolezel; Jane Rogers; Klaas Vandepoele; Jean-Marc Aury; Klaus F. X. Mayer; Hélène Bergès; Hadi Quesneville; Patrick Wincker
We produced a reference sequence of the 1-gigabase chromosome 3B of hexaploid bread wheat. By sequencing 8452 bacterial artificial chromosomes in pools, we assembled a sequence of 774 megabases carrying 5326 protein-coding genes, 1938 pseudogenes, and 85% of transposable elements. The distribution of structural and functional features along the chromosome revealed partitioning correlated with meiotic recombination. Comparative analyses indicated high wheat-specific inter- and intrachromosomal gene duplication activities that are potential sources of variability for adaption. In addition to providing a better understanding of the organization, function, and evolution of a large and polyploid genome, the availability of a high-quality sequence anchored to genetic maps will accelerate the identification of genes underlying important agronomic traits.
The Plant Cell | 2010
Frédéric Choulet; Thomas Wicker; Camille Rustenholz; Etienne Paux; Jérôme Salse; Philippe Leroy; Stéphane Schlub; Marie Christine Le Paslier; Ghislaine Magdelenat; Catherine Gonthier; Arnaud Couloux; Hikmet Budak; James Breen; Michael O. Pumphrey; Sixin Liu; Xiuying Kong; Jizeng Jia; Marta Gut; Dominique Brunel; James A. Anderson; Bikram S. Gill; R. Appels; Beat Keller; Catherine Feuillet
This article describes the molecular analysis of large contiguous sequences produced from the bread wheat genome. It provides novel insights into the number, distribution, and density of genes along chromosome 3B and reveals an unexpectedly high amount of noncollinear genes compared to model grass genomes. To improve our understanding of the organization and evolution of the wheat (Triticum aestivum) genome, we sequenced and annotated 13-Mb contigs (18.2 Mb) originating from different regions of its largest chromosome, 3B (1 Gb), and produced a 2x chromosome survey by shotgun Illumina/Solexa sequencing. All regions carried genes irrespective of their chromosomal location. However, gene distribution was not random, with 75% of them clustered into small islands containing three genes on average. A twofold increase of gene density was observed toward the telomeres likely due to high tandem and interchromosomal duplication events. A total of 3222 transposable elements were identified, including 800 new families. Most of them are complete but showed a highly nested structure spread over distances as large as 200 kb. A succession of amplification waves involving different transposable element families led to contrasted sequence compositions between the proximal and distal regions. Finally, with an estimate of 50,000 genes per diploid genome, our data suggest that wheat may have a higher gene number than other cereals. Indeed, comparisons with rice (Oryza sativa) and Brachypodium revealed that a high number of additional noncollinear genes are interspersed within a highly conserved ancestral grass gene backbone, supporting the idea of an accelerated evolution in the Triticeae lineages.
The Plant Cell | 2011
Thomas Wicker; Klaus F. X. Mayer; Heidrun Gundlach; Mihaela Martis; Burkhard Steuernagel; Uwe Scholz; Hana Šimková; Marie Kubaláková; Frédéric Choulet; Matthias Platzer; Catherine Feuillet; Tzion Fahima; Hikmet Budak; Jaroslav Dolezel; Beat Keller; Nils Stein
This work uses survey sequence to examine the genic content of hexaploid wheat group 1 chromosomes, in comparison with barley, and other model grass genomes (rice, Brachypodium, and sorghum), finding that wheat and barley accumulate dramatically more nonsyntenic genes, many of which appear to be pseudogenes. All six arms of the group 1 chromosomes of hexaploid wheat (Triticum aestivum) were sequenced with Roche/454 to 1.3- to 2.2-fold coverage and compared with similar data sets from the homoeologous chromosome 1H of barley (Hordeum vulgare). Six to ten thousand gene sequences were sampled per chromosome. These were classified into genes that have their closest homologs in the Triticeae group 1 syntenic region in Brachypodium, rice (Oryza sativa), and/or sorghum (Sorghum bicolor) and genes that have their homologs elsewhere in these model grass genomes. Although the number of syntenic genes was similar between the homologous groups, the amount of nonsyntenic genes was found to be extremely diverse between wheat and barley and even between wheat subgenomes. Besides a small core group of genes that are nonsyntenic in other grasses but conserved among Triticeae, we found thousands of genic sequences that are specific to chromosomes of one single species or subgenome. By examining in detail 50 genes from chromosome 1H for which BAC sequences were available, we found that many represent pseudogenes that resulted from transposable element activity and double-strand break repair. Thus, Triticeae seem to accumulate nonsyntenic genes frequently. Since many of them are likely to be pseudogenes, total gene numbers in Triticeae are prone to pronounced overestimates.
Frontiers in Plant Science | 2012
Philippe Leroy; Nicolas Guilhot; Hiroaki Sakai; Aurélien Bernard; Frédéric Choulet; Sébastien Theil; Sébastien Reboux; Naoki Amano; Timothée Flutre; Céline Pelegrin; Hajime Ohyanagi; Michael Seidel; Franck Giacomoni; Mathieu Reichstadt; Michael Alaux; Emmanuelle Gicquello; Fabrice Legeai; Lorenzo Cerutti; Hisataka Numa; Tsuyoshi Tanaka; Klaus F. X. Mayer; Takeshi Itoh; Hadi Quesneville; Catherine Feuillet
In support of the international effort to obtain a reference sequence of the bread wheat genome and to provide plant communities dealing with large and complex genomes with a versatile, easy-to-use online automated tool for annotation, we have developed the TriAnnot pipeline. Its modular architecture allows for the annotation and masking of transposable elements, the structural, and functional annotation of protein-coding genes with an evidence-based quality indexing, and the identification of conserved non-coding sequences and molecular markers. The TriAnnot pipeline is parallelized on a 712 CPU computing cluster that can run a 1-Gb sequence annotation in less than 5 days. It is accessible through a web interface for small scale analyses or through a server for large scale annotations. The performance of TriAnnot was evaluated in terms of sensitivity, specificity, and general fitness using curated reference sequence sets from rice and wheat. In less than 8 h, TriAnnot was able to predict more than 83% of the 3,748 CDS from rice chromosome 1 with a fitness of 67.4%. On a set of 12 reference Mb-sized contigs from wheat chromosome 3B, TriAnnot predicted and annotated 93.3% of the genes among which 54% were perfectly identified in accordance with the reference annotation. It also allowed the curation of 12 genes based on new biological evidences, increasing the percentage of perfect gene prediction to 63%. TriAnnot systematically showed a higher fitness than other annotation pipelines that are not improved for wheat. As it is easily adaptable to the annotation of other plant genomes, TriAnnot should become a useful resource for the annotation of large and complex genomes in the future.
Plant Physiology | 2011
Camille Rustenholz; Frédéric Choulet; Christel Laugier; Jan Šafář; Hana Šimková; Jaroslav Doležel; Federica Magni; Simone Scalabrin; Federica Cattonaro; Sonia Vautrin; Arnaud Bellec; Hélène Bergès; Catherine Feuillet; Etienne Paux
To improve our understanding of the organization and regulation of the wheat (Triticum aestivum) gene space, we established a transcription map of a wheat chromosome (3B) by hybridizing a newly developed wheat expression microarray with bacterial artificial chromosome pools from a new version of the 3B physical map as well as with cDNA probes derived from 15 RNA samples. Mapping data for almost 3,000 genes showed that the gene space spans the whole chromosome 3B with a 2-fold increase of gene density toward the telomeres due to an increase in the number of genes in islands. Comparative analyses with rice (Oryza sativa) and Brachypodium distachyon revealed that these gene islands are composed mainly of genes likely originating from interchromosomal gene duplications. Gene Ontology and expression profile analyses for the 3,000 genes located along the chromosome revealed that the gene islands are enriched significantly in genes sharing the same function or expression profile, thereby suggesting that genes in islands acquired shared regulation during evolution. Only a small fraction of these clusters of cofunctional and coexpressed genes was conserved with rice and B. distachyon, indicating a recent origin. Finally, genes with the same expression profiles in remote islands (coregulation islands) were identified suggesting long-distance regulation of gene expression along the chromosomes in wheat.
Genome Biology | 2015
Lise Pingault; Frédéric Choulet; Adriana Alberti; Natasha Glover; Patrick Wincker; Catherine Feuillet; Etienne Paux
BackgroundBecause of its size, allohexaploid nature, and high repeat content, the bread wheat genome is a good model to study the impact of the genome structure on gene organization, function, and regulation. However, because of the lack of a reference genome sequence, such studies have long been hampered and our knowledge of the wheat gene space is still limited. The access to the reference sequence of the wheat chromosome 3B provided us with an opportunity to study the wheat transcriptome and its relationships to genome and gene structure at a level that has never been reached before.ResultsBy combining this sequence with RNA-seq data, we construct a fine transcriptome map of the chromosome 3B. More than 8,800 transcription sites are identified, that are distributed throughout the entire chromosome. Expression level, expression breadth, alternative splicing as well as several structural features of genes, including transcript length, number of exons, and cumulative intron length are investigated. Our analysis reveals a non-monotonic relationship between gene expression and structure and leads to the hypothesis that gene structure is determined by its function, whereas gene expression is subject to energetic cost. Moreover, we observe a recombination-based partitioning at the gene structure and function level.ConclusionsOur analysis provides new insights into the relationships between gene and genome structure and function. It reveals mechanisms conserved with other plant species as well as superimposed evolutionary forces that shaped the wheat gene space, likely participating in wheat adaptation.
Genome Biology | 2013
Romain Philippe; Etienne Paux; Isabelle Bertin; Pierre Sourdille; Frédéric Choulet; Christel Laugier; Hana Šimková; Jan Šafář; Arnaud Bellec; Sonia Vautrin; Zeev Frenkel; Federica Cattonaro; Federica Magni; Simone Scalabrin; Mihaela Martis; Klaus F. X. Mayer; Abraham B. Korol; Hélène Bergès; Jaroslav Doležel; Catherine Feuillet
BackgroundAs for other major crops, achieving a complete wheat genome sequence is essential for the application of genomics to breeding new and improved varieties. To overcome the complexities of the large, highly repetitive and hexaploid wheat genome, the International Wheat Genome Sequencing Consortium established a chromosome-based strategy that was validated by the construction of the physical map of chromosome 3B. Here, we present improved strategies for the construction of highly integrated and ordered wheat physical maps, using chromosome 1BL as a template, and illustrate their potential for evolutionary studies and map-based cloning.ResultsUsing a combination of novel high throughput marker assays and an assembly program, we developed a high quality physical map representing 93% of wheat chromosome 1BL, anchored and ordered with 5,489 markers including 1,161 genes. Analysis of the gene space organization and evolution revealed that gene distribution and conservation along the chromosome results from the superimposition of the ancestral grass and recent wheat evolutionary patterns, leading to a peak of synteny in the central part of the chromosome arm and an increased density of non-collinear genes towards the telomere. With a density of about 11 markers per Mb, the 1BL physical map provides 916 markers, including 193 genes, for fine mapping the 40 QTLs mapped on this chromosome.ConclusionsHere, we demonstrate that high marker density physical maps can be developed in complex genomes such as wheat to accelerate map-based cloning, gain new insights into genome evolution, and provide a foundation for reference sequencing.
PLOS ONE | 2014
Jian Ma; Jiri Stiller; Qiang Zhao; Qi Feng; Colin Cavanagh; Penghao Wang; Donald M. Gardiner; Frédéric Choulet; Catherine Feuillet; You-Liang Zheng; Yu-Ming Wei; Guijun Yan; Bin Han; John M. Manners; Chunji Liu
Fusarium pathogens cause two major diseases in cereals, Fusarium crown rot (FCR) and head blight (FHB). A large-effect locus conferring resistance to FCR disease was previously located to chromosome arm 3BL (designated as Qcrs-3B) and several independent sets of near isogenic lines (NILs) have been developed for this locus. In this study, five sets of the NILs were used to examine transcriptional changes associated with the Qcrs-3B locus and to identify genes linked to the resistance locus as a step towards the isolation of the causative gene(s). Of the differentially expressed genes (DEGs) detected between the NILs, 12.7% was located on the single chromosome 3B. Of the expressed genes containing SNP (SNP-EGs) detected, 23.5% was mapped to this chromosome. Several of the DEGs and SNP-EGs are known to be involved in host-pathogen interactions, and a large number of the DEGs were among those detected for FHB in previous studies. Of the DEGs detected, 22 were mapped in the Qcrs-3B interval and they included eight which were detected in the resistant isolines only. The enrichment of DEG, and not necessarily those containing SNPs between the resistant and susceptible isolines, around the Qcrs-3B locus is suggestive of local regulation of this region by the resistance allele. Functions for 13 of these DEGs are known. Of the SNP-EGs, 28 were mapped in the Qcrs-3B interval and biological functions for 16 of them are known. These results provide insights into responses regulated by the 3BL locus and identify a tractable number of target genes for fine mapping and functional testing to identify the causative gene(s) at this QTL.
BMC Genomics | 2012
Romain Philippe; Frédéric Choulet; Etienne Paux; Jan van Oeveren; Jifeng Tang; Alexander H.J. Wittenberg; Antoine Janssen; Michiel J. T. van Eijk; Keith Stormo; Adriana Alberti; Patrick Wincker; Eduard Akhunov; Edwin van der Vossen; Catherine Feuillet
BackgroundSequencing projects using a clone-by-clone approach require the availability of a robust physical map. The SNaPshot technology, based on pair-wise comparisons of restriction fragments sizes, has been used recently to build the first physical map of a wheat chromosome and to complete the maize physical map. However, restriction fragments sizes shared randomly between two non-overlapping BACs often lead to chimerical contigs and mis-assembled BACs in such large and repetitive genomes. Whole Genome Profiling (WGP™) was developed recently as a new sequence-based physical mapping technology and has the potential to limit this problem.ResultsA subset of the wheat 3B chromosome BAC library covering 230 Mb was used to establish a WGP physical map and to compare it to a map obtained with the SNaPshot technology. We first adapted the WGP-based assembly methodology to cope with the complexity of the wheat genome. Then, the results showed that the WGP map covers the same length than the SNaPshot map but with 30% less contigs and, more importantly with 3.5 times less mis-assembled BACs. Finally, we evaluated the benefit of integrating WGP tags in different sequence assemblies obtained after Roche/454 sequencing of BAC pools. We showed that while WGP tag integration improves assemblies performed with unpaired reads and with paired-end reads at low coverage, it does not significantly improve sequence assemblies performed at high coverage (25x) with paired-end reads.ConclusionsOur results demonstrate that, with a suitable assembly methodology, WGP builds more robust physical maps than the SNaPshot technology in wheat and that WGP can be adapted to any genome. Moreover, WGP tag integration in sequence assemblies improves low quality assembly. However, to achieve a high quality draft sequence assembly, a sequencing depth of 25x paired-end reads is required, at which point WGP tag integration does not provide additional scaffolding value. Finally, we suggest that WGP tags can support the efficient sequencing of BAC pools by enabling reliable assignment of sequence scaffolds to their BAC of origin, a feature that is of great interest when using BAC pooling strategies to reduce the cost of sequencing large genomes.