Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Frédéric Colinet is active.

Publication


Featured researches published by Frédéric Colinet.


Journal of Dairy Science | 2009

Genetic analysis of lactoferrin content in bovine milk

Valérie Arnould; Hélène Soyeurt; Nicolas Gengler; Frédéric Colinet; Marielle Georges; Carlo Bertozzi; Daniel Portetelle; Robert Renaville

Bovine lactoferrin (LF) is mainly present in milk and shows important physiological and biological functions. The aim of this study was to estimate the heritability and correlation values of LF content in bovine milk with different economic traits as milk yield (MY), fat and protein percentages, and somatic cell score (SCS). Variance components of the studied traits were estimated by REML using a multiple-trait mixed model. The obtained heritability (0.22) for LF content predicted using mid-infrared spectrometry (pLF) suggested the possibility of animal selection based on the increase of LF content in milk. The phenotypic and genetic correlation values calculated between pLF and SCS were moderate (0.31 and 0.24, respectively). Furthermore, a preliminary study of bovine LF gene polymorphism effects was performed on the same production traits. By PCR, all exons of the LF gene were amplified and then sequenced. Three new polymorphisms were detected in exon 2, exon 11, and intron 8. We examined the effects of LF gene polymorphisms of exons 2, 4, 9, 11, and 15, and intron 8 on pLF, MY, fat and protein percentages, and SCS. The different observed effects did not reach a significant level probably because of the characteristics of the studied population. However, the results were promising, and LF may be a potential indicator of mastitis. Further studies are necessary to evaluate the effect of genetic selection based on LF content on the improvement of mastitis resistance.


Journal of Dairy Science | 2016

Capitalizing on fine milk composition for breeding and management of dairy cows.

Nicolas Gengler; Hélène Soyeurt; Frédéric Dehareng; Catherine Bastin; Frédéric Colinet; Hedi Hammami; Marie-Laure Vanrobays; Aurélie Laine; Sylvie Vanderick; Clément Grelet; Amélie Vanlierde; Eric Froidmont; Pierre Dardenne

The challenge of managing and breeding dairy cows is permanently adapting to changing production circumstances under socio-economic constraints. If managing and breeding address different timeframes of action, both need relevant phenotypes that allow for precise monitoring of the status of the cows, and their health, behavior, and well-being as well as their environmental impact and the quality of their products (i.e., milk and subsequently dairy products). Milk composition has been identified as an important source of information because it could reflect, at least partially, all these elements. Major conventional milk components such as fat, protein, urea, and lactose contents are routinely predicted by mid-infrared (MIR) spectrometry and have been widely used for these purposes. But, milk composition is much more complex and other nonconventional milk components, potentially predicted by MIR, might be informative. Such new milk-based phenotypes should be considered given that they are cheap, rapidly obtained, usable on a large scale, robust, and reliable. In a first approach, new phenotypes can be predicted from MIR spectra using techniques based on classical prediction equations. This method was used successfully for many novel traits (e.g., fatty acids, lactoferrin, minerals, milk technological properties, citrate) that can be then useful for management and breeding purposes. An innovation was to consider the longitudinal nature of the relationship between the trait of interest and the MIR spectra (e.g., to predict methane from MIR). By avoiding intermediate steps, prediction errors can be minimized when traits of interest (e.g., methane, energy balance, ketosis) are predicted directly from MIR spectra. In a second approach, research is ongoing to detect and exploit patterns in an innovative manner, by comparing observed with expected MIR spectra directly (e.g., pregnancy). All of these traits can then be used to define best practices, adjust feeding and health management, improve animal welfare, improve milk quality, and mitigate environmental impact. Under the condition that MIR data are available on a large scale, phenotypes for these traits will allow genetic and genomic evaluations. Introduction of novel traits into the breeding objectives will need additional research to clarify socio-economic weights and genetic correlations with other traits of interest.


Journal of Dairy Science | 2016

Development of Fourier transform mid-infrared calibrations to predict acetone, β-hydroxybutyrate, and citrate contents in bovine milk through a European dairy network.

Clément Grelet; Catherine Bastin; M. Gelé; J.-B. Davière; M. Johan; A. Werner; R. Reding; J.A. Fernández Pierna; Frédéric Colinet; Pierre Dardenne; Nicolas Gengler; Hélène Soyeurt; Frédéric Dehareng

To manage negative energy balance and ketosis in dairy farms, rapid and cost-effective detection is needed. Among the milk biomarkers that could be useful for this purpose, acetone and β-hydroxybutyrate (BHB) have been proved as molecules of interest regarding ketosis and citrate was recently identified as an early indicator of negative energy balance. Because Fourier transform mid-infrared spectrometry can provide rapid and cost-effective predictions of milk composition, the objective of this study was to evaluate the ability of this technology to predict these biomarkers in milk. Milk samples were collected in commercial and experimental farms in Luxembourg, France, and Germany. Acetone, BHB, and citrate contents were determined by flow injection analysis. Milk mid-infrared spectra were recorded and standardized for all samples. After edits, a total of 548 samples were used in the calibration and validation data sets for acetone, 558 for BHB, and 506 for citrate. Acetone content ranged from 0.020 to 3.355mmol/L with an average of 0.103mmol/L; BHB content ranged from 0.045 to 1.596mmol/L with an average of 0.215mmol/L; and citrate content ranged from 3.88 to 16.12mmol/L with an average of 9.04mmol/L. Acetone and BHB contents were log-transformed and a part of the samples with low values was randomly excluded to approach a normal distribution. The 3 edited data sets were then randomly divided into a calibration data set (3/4 of the samples) and a validation data set (1/4 of the samples). Prediction equations were developed using partial least square regression. The coefficient of determination (R(2)) of cross-validation was 0.73 for acetone, 0.71 for BHB, and 0.90 for citrate with root mean square error of 0.248, 0.109, and 0.70mmol/L, respectively. Finally, the external validation was performed and R(2) obtained were 0.67 for acetone, 0.63 for BHB, and 0.86 for citrate, with respective root mean square error of validation of 0.196, 0.083, and 0.76mmol/L. Although the practical usefulness of the equations developed should be further verified with other field data, results from this study demonstrated the potential of Fourier transform mid-infrared spectrometry to predict citrate content with good accuracy and to supply indicative contents of BHB and acetone in milk, thereby providing rapid and cost-effective tools to manage ketosis and negative energy balance in dairy farms.


Genetics Selection Evolution | 2014

Unified method to integrate and blend several, potentially related, sources of information for genetic evaluation.

Jérémie Vandenplas; Frédéric Colinet; Nicolas Gengler

BackgroundA condition to predict unbiased estimated breeding values by best linear unbiased prediction is to use simultaneously all available data. However, this condition is not often fully met. For example, in dairy cattle, internal (i.e. local) populations lead to evaluations based only on internal records while widely used foreign sires have been selected using internally unavailable external records. In such cases, internal genetic evaluations may be less accurate and biased. Because external records are unavailable, methods were developed to combine external information that summarizes these records, i.e. external estimated breeding values and associated reliabilities, with internal records to improve accuracy of internal genetic evaluations. Two issues of these methods concern double-counting of contributions due to relationships and due to records. These issues could be worse if external information came from several evaluations, at least partially based on the same records, and combined into a single internal evaluation. Based on a Bayesian approach, the aim of this research was to develop a unified method to integrate and blend simultaneously several sources of information into an internal genetic evaluation by avoiding double-counting of contributions due to relationships and due to records.ResultsThis research resulted in equations that integrate and blend simultaneously several sources of information and avoid double-counting of contributions due to relationships and due to records. The performance of the developed equations was evaluated using simulated and real datasets. The results showed that the developed equations integrated and blended several sources of information well into a genetic evaluation. The developed equations also avoided double-counting of contributions due to relationships and due to records. Furthermore, because all available external sources of information were correctly propagated, relatives of external animals benefited from the integrated information and, therefore, more reliable estimated breeding values were obtained.ConclusionsThe proposed unified method integrated and blended several sources of information well into a genetic evaluation by avoiding double-counting of contributions due to relationships and due to records. The unified method can also be extended to other types of situations such as single-step genomic or multi-trait evaluations, combining information across different traits.


Animal Biotechnology | 2009

Genomic location of the bovine growth hormone secretagogue receptor (GHSR) gene and investigation of genetic polymorphism.

Frédéric Colinet; Sylvie Vanderick; Benoit Charloteaux; A. Eggen; Nicolas Gengler; Bénédicte Renaville; Robert Brasseur; Daniel Portetelle; Robert Renaville

The growth hormone secretagogue receptor (GHSR) is involved in the regulation of energetic homeostasis and GH secretion. In this study, the bovine GHSR gene was mapped to BTA1 between BL26 and BMS4004. Two different bovine GHSR CDS (GHSR1a and GHSR1b) were sequenced. Six polymorphisms (five SNPs and one 3-bp indel) were also identified, three of them leading to amino acid variations L24V, D194N, and Del R242. These variations are located in the extracellular N-terminal end, the exoloop 2, and the cytoloop 3 of the receptor, respectively.


Journal of Dairy Science | 2017

Standardization of milk mid-infrared spectrometers for the transfer and use of multiple models

Clément Grelet; J.A. Fernández Pierna; Pierre Dardenne; Hélène Soyeurt; Amélie Vanlierde; Frédéric Colinet; Catherine Bastin; Nicolas Gengler; Vincent Baeten; Frédéric Dehareng

An increasing number of models are being developed to provide information from milk Fourier transform mid-infrared (FT-MIR) spectra on fine milk composition, technological properties of milk, or even cows physiological status. In this context, and to take advantage of these existing models, the purpose of this work was to evaluate whether a spectral standardization method can enable the use of multiple equations within a network of different FT-MIR spectrometers. The piecewise direct standardization method was used, matching slave instruments to a common reference, the master. The effect of standardization on network reproducibility was assessed on 66 instruments from 3 different brands by comparing the spectral variability of the slaves and the master with and without standardization. With standardization, the global Mahalanobis distance from the slave spectra to the master spectra was reduced on average from 2,655.9 to 14.3, representing a significant reduction of noninformative spectral variability. The transfer of models from instrument to instrument was tested using 3 FT-MIR models predicting (1) the quantity of daily methane emitted by dairy cows, (2) the concentration of polyunsaturated fatty acids in milk, and (3) the fresh cheese yield. The differences, in terms of root mean squared error, between master predictions and slave predictions were reduced after standardization on average from 103 to 17 g/d, from 0.0315 to 0.0045 g/100 mL of milk, and from 2.55 to 0.49 g of curd/100 g of milk, respectively. For all the models, standard deviations of predictions among all the instruments were also reduced by 5.11 times for methane, 5.01 times for polyunsaturated fatty acids, and 7.05 times for fresh cheese yield, showing an improvement of prediction reproducibility within the network. Regarding the results obtained, spectral standardization allows the transfer and use of multiple models on all instruments as well as the improvement of spectral and prediction reproducibility within the network. The method makes the models universal, thereby offering opportunities for data exchange and the creation and use of common robust models at an international level to provide more information to the dairy sector from direct analysis of milk.


PLOS ONE | 2017

Genomics of a revived breed: Case study of the Belgian campine cattle

Liesbeth François; Katrien Wijnrocx; Frédéric Colinet; Nicolas Gengler; Bettine Hulsegge; J.J. Windig; Nadine Buys; Steven Janssens

Through centuries of both natural and artificial selection, a variety of local cattle populations arose with highly specific phenotypes. However, the intensification and expansion of scale in animal production systems led to the predominance of a few highly productive cattle breeds. The loss of local populations is often considered irreversible and with them specific qualities and rare variants could be lost as well. Over these last years, the interest in these local breeds has increased again leading to increasing efforts to conserve these breeds or even revive lost populations, e.g. through the use of crosses with similar breeds. However, the remaining populations are expected to contain crossbred individuals resulting from introgressions. They are likely to carry exogenous genes that affect the breed’s authenticity on a genomic level. Using the revived Campine breed as a case study, 289 individuals registered as purebreds were genotyped on the Illumina BovineSNP50. In addition, genomic information on the Illumina BovineHD and Illumina BovineSNP50 of ten breeds was available to assess the current population structure, genetic diversity, and introgression with phenotypically similar and/or historically related breeds. Introgression with Holstein and beef cattle genotypes was limited to only a few farms. While the current population shows a substantial amount of within-breed variation, the majority of genotypes can be separated from other breeds in the study, supporting the re-establishment of the Campine breed. The majority of the population is genetically close to the Deep Red (NL), Improved Red (NL) and Eastern Belgium Red and White (BE) cattle, breeds known for their historical ties to the Campine breed. This would support an open herdbook policy, thereby increasing the population size and consequently providing a more secure future for the breed.


Journal of Dairy Science | 2015

Integration of external estimated breeding values and associated reliabilities using correlations among traits and effects

Jérémie Vandenplas; Frédéric Colinet; Géry Glorieux; Carlo Bertozzi; Nicolas Gengler

Based on a Bayesian view of linear mixed models, several studies showed the possibilities to integrate estimated breeding values (EBV) and associated reliabilities (REL) provided by genetic evaluations performed outside a given evaluation system into this genetic evaluation. Hereafter, the term internal refers to this given genetic evaluation system, and the term external refers to all other genetic evaluations performed outside the internal evaluation system. Bayesian approaches integrate external information (i.e., external EBV and associated REL) by altering both the mean and (co)variance of the prior distributions of the additive genetic effects based on the knowledge of this external information. Extensions of the Bayesian approaches to multivariate settings are interesting because external information expressed on other scales, measurement units, or trait definitions, or associated with different heritabilities and genetic parameters than the internal traits, could be integrated into a multivariate genetic evaluation without the need to convert external information to the internal traits. Therefore, the aim of this study was to test the integration of external EBV and associated REL, expressed on a 305-d basis and genetically correlated with a trait of interest, into a multivariate genetic evaluation using a random regression test-day model for the trait of interest. The approach we used was a multivariate Bayesian approach. Results showed that the integration of external information led to a genetic evaluation for the trait of interest for, at least, animals associated with external information, as accurate as a bivariate evaluation including all available phenotypic information. In conclusion, the multivariate Bayesian approaches have the potential to integrate external information correlated with the internal phenotypic traits, and potentially to the different random regressions, into a multivariate genetic evaluation. This allows the use of different scales, heritabilities, variance components, measurement units, or trait definitions for external and internal traits. However, one possible issue for implementing multivariate Bayesian approaches could be the availability or estimation of genetic correlations between external and internal traits.


Journal of Dairy Science | 2017

Assessing the effect of pregnancy stage on milk composition of dairy cows using mid-infrared spectra

Aurélie Laine; Catherine Bastin; Clément Grelet; Hedi Hammami; Frédéric Colinet; L. M. Dale; Alain Gillon; Jérémie Vandenplas; Frédéric Dehareng; Nicolas Gengler

Changes in milk production traits (i.e., milk yield, fat, and protein contents) with the pregnancy stage are well documented. To our knowledge, the effect of pregnancy on the detailed milk composition has not been studied so far. The mid-infrared (MIR) spectrum reflects the detailed composition of a milk sample and is obtained by a nonexhaustive and widely used method for milk analysis. Therefore, this study aimed to investigate the effect of pregnancy on milk MIR spectrum in addition to milk production traits (milk yield, fat, and protein contents). A model including regression on the number of days pregnant was applied on milk production traits (milk yield, fat, and protein contents) and on 212 spectral points from the MIR spectra of 9,757 primiparous Holstein cows from Walloon herds. Effects of pregnancy stage were expressed on a relative scale (effect divided by the squared root of the phenotypic variance); this allowed comparisons between effects on milk traits and on 212 spectral points. Effect of pregnancy stage on production traits were in line with previous studies indicating that the model accounted well for the pregnancy effect. Trends of the relative effect of the pregnancy stage on the 212 spectral points were consistent with known and observed effect on milk traits. The highest effect of the pregnancy was observed in the MIR spectral region from 968 to 1,577 cm-1. For some specific wavenumbers, the effect was higher than for fat and protein contents in the beginning of the pregnancy (from 30 to 90 or 120 d pregnant). In conclusion, the effect of early pregnancy can be observed in the detailed milk composition through the analysis of the MIR spectrum of bovine milk. Further analyses are warranted to explore deeply the use of MIR spectra of bovine milk for breeding and management of dairy cow pregnancy.


Journal of Dairy Science | 2018

Short communication: Development of an equation for estimating methane emissions of dairy cows from milk Fourier transform mid-infrared spectra by using reference data obtained exclusively from respiration chambers

Amélie Vanlierde; Hélène Soyeurt; Nicolas Gengler; Frédéric Colinet; Eric Froidmont; Michael Kreuzer; Florian Grandl; M.J. Bell; P. Lund; Dana Olijhoek; Maguy Eugène; C. Martin; Björn Kuhla; Frédéric Dehareng

Evaluation and mitigation of enteric methane (CH4) emissions from ruminant livestock, in particular from dairy cows, have acquired global importance for sustainable, climate-smart cattle production. Based on CH4 reference measurements obtained with the SF6 tracer technique to determine ruminal CH4 production, a current equation permits evaluation of individual daily CH4 emissions of dairy cows based on milk Fourier transform mid-infrared (FT-MIR) spectra. However, the respiration chamber (RC) technique is considered to be more accurate than SF6 to measure CH4 production from cattle. This study aimed to develop an equation that allows estimating CH4 emissions of lactating cows recorded in an RC from corresponding milk FT-MIR spectra and to challenge its robustness and relevance through validation processes and its application on a milk spectral database. This would permit confirming the conclusions drawn with the existing equation based on SF6 reference measurements regarding the potential to estimate daily CH4 emissions of dairy cows from milk FT-MIR spectra. A total of 584 RC reference CH4 measurements (mean ± standard deviation of 400 ± 72 g of CH4/d) and corresponding standardized milk mid-infrared spectra were obtained from 148 individual lactating cows between 7 and 321 d in milk in 5 European countries (Germany, Switzerland, Denmark, France, and Northern Ireland). The developed equation based on RC measurements showed calibration and cross-validation coefficients of determination of 0.65 and 0.57, respectively, which is lower than those obtained earlier by the equation based on 532 SF6 measurements (0.74 and 0.70, respectively). This means that the RC-based model is unable to explain the variability observed in the corresponding reference data as well as the SF6-based model. The standard errors of calibration and cross-validation were lower for the RC model (43 and 47 g/d vs. 66 and 70 g/d for the SF6 version, respectively), indicating that the model based on RC data was closer to actual values. The root mean squared error (RMSE) of calibration of 42 g/d represents only 10% of the overall daily CH4 production, which is 23 g/d lower than the RMSE for the SF6-based equation. During the external validation step an RMSE of 62 g/d was observed. When the RC equation was applied to a standardized spectral database of milk recordings collected in the Walloon region of Belgium between January 2012 and December 2017 (1,515,137 spectra from 132,658 lactating cows in 1,176 different herds), an average ± standard deviation of 446 ± 51 g of CH4/d was estimated, which is consistent with the range of the values measured using both RC and SF6 techniques. This study confirmed that milk FT-MIR spectra could be used as a potential proxy to estimate daily CH4 emissions from dairy cows provided that the variability to predict is covered by the model.

Collaboration


Dive into the Frédéric Colinet's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jérémie Vandenplas

Wageningen University and Research Centre

View shared research outputs
Researchain Logo
Decentralizing Knowledge