Frédéric Debellé
Institut national de la recherche agronomique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Frédéric Debellé.
The Plant Cell | 1994
M Ardourel; N. Demont; Frédéric Debellé; Fabienne Maillet; F. de Billy; Jean-Claude Promé; Jean Dénarié; Georges Truchet
Rhizobium meliloti produces lipochitooligosaccharide nodulation NodRm factors that are required for nodulation of legume hosts. NodRm factors are O-acetylated and N-acylated by specific C16-unsaturated fatty acids. nodL mutants produce non-O-acetylated factors, and nodFE mutants produce factors with modified acyl substituents. Both mutants exhibited a significantly reduced capacity to elicit infection thread (IT) formation in alfalfa. However, once initiated, ITs developed and allowed the formation of nitrogen-fixing nodules. In contrast, double nodF/nodL mutants were unable to penetrate into legume hosts and to form ITs. Nevertheless, these mutants induced widespread cell wall tip growth in trichoblasts and other epidermal cells and were also able to elicit cortical cell activation at a distance. NodRm factor structural requirements are thus clearly more stringent for bacterial entry than for the elicitation of developmental plant responses.
Cell | 1991
Philippe Roche; Frédéric Debellé; Fabienne Maillet; Patrice Lerouge; Catherine Faucher; Georges Truchet; Jean Dénarié; Jean-Claude Promé
The symbiosis between Rhizobium and legumes is highly specific. For example, R. meliloti elicits the formation of root nodules on alfalfa and not on vetch. We recently reported that R. meliloti nodulation (nod) genes determine the production of acylated and sulfated glucosamine oligosaccharide signals. We now show that the biochemical function of the major host-range genes, nodH and nodPQ, is to specify the 6-O-sulfation of the reducing terminal glucosamine. Purified Nod factors (sulfated or not) from nodH+ or nodH- strains exhibited the same plant specificity in a variety of bioassays (root hair deformations, nodulation, changes in root morphology) as the bacterial cells from which they were purified. These results provide strong evidence that the molecular mechanism by which the nodH and nodPQ genes mediate host specificity is by determining the sulfation of the extracellular Nod signals.
Proceedings of the National Academy of Sciences of the United States of America | 2006
Steven B. Cannon; Lieven Sterck; Stephane Rombauts; Shusei Sato; Foo Cheung; Jérôme Gouzy; Xiaohong Wang; Joann Mudge; Jayprakash Vasdewani; Thomas Schiex; Manuel Spannagl; Erin Monaghan; Christine Nicholson; Sean Humphray; Heiko Schoof; Klaus F. X. Mayer; Jane Rogers; Francis Quetier; Giles E. D. Oldroyd; Frédéric Debellé; Douglas R. Cook; Ernest F. Retzel; Bruce A. Roe; Christopher D. Town; Satoshi Tabata; Yves Van de Peer; Nevin D. Young
Genome sequencing of the model legumes, Medicago truncatula and Lotus japonicus, provides an opportunity for large-scale sequence-based comparison of two genomes in the same plant family. Here we report synteny comparisons between these species, including details about chromosome relationships, large-scale synteny blocks, microsynteny within blocks, and genome regions lacking clear correspondence. The Lotus and Medicago genomes share a minimum of 10 large-scale synteny blocks, each with substantial collinearity and frequently extending the length of whole chromosome arms. The proportion of genes syntenic and collinear within each synteny block is relatively homogeneous. Medicago–Lotus comparisons also indicate similar and largely homogeneous gene densities, although gene-containing regions in Mt occupy 20–30% more space than Lj counterparts, primarily because of larger numbers of Mt retrotransposons. Because the interpretation of genome comparisons is complicated by large-scale genome duplications, we describe synteny, synonymous substitutions and phylogenetic analyses to identify and date a probable whole-genome duplication event. There is no direct evidence for any recent large-scale genome duplication in either Medicago or Lotus but instead a duplication predating speciation. Phylogenetic comparisons place this duplication within the Rosid I clade, clearly after the split between legumes and Salicaceae (poplar).
Genetics | 2005
Jeong Hwan Mun; Dong Jin Kim; Hong Kyu Choi; John Gish; Frédéric Debellé; J. Mudge; Roxanne Denny; Gabriella Endre; Oliver Saurat; Anne Marie Dudez; György B. Kiss; Bruce A. Roe; Nevin D. Young; Douglas R. Cook
Microsatellites are tandemly repeated short DNA sequences that are favored as molecular-genetic markers due to their high polymorphism index. Plant genomes characterized to date exhibit taxon-specific differences in frequency, genomic location, and motif structure of microsatellites, indicating that extant microsatellites originated recently and turn over quickly. With the goal of using microsatellite markers to integrate the physical and genetic maps of Medicago truncatula, we surveyed the frequency and distribution of perfect microsatellites in 77 Mbp of gene-rich BAC sequences, 27 Mbp of nonredundant transcript sequences, 20 Mbp of random whole genome shotgun sequences, and 49 Mbp of BAC-end sequences. Microsatellites are predominantly located in gene-rich regions of the genome, with a density of one long (i.e., ≥20 nt) microsatellite every 12 kbp, while the frequency of individual motifs varied according to the genome fraction under analysis. A total of 1,236 microsatellites were analyzed for polymorphism between parents of our reference intraspecific mapping population, revealing that motifs (AT)n, (AG)n, (AC)n, and (AAT)n exhibit the highest allelic diversity. A total of 378 genetic markers could be integrated with sequenced BAC clones, anchoring 274 physical contigs that represent 174 Mbp of the genome and composing an estimated 70% of the euchromatic gene space.
Molecular Plant-microbe Interactions | 2006
Olivier Godfroy; Frédéric Debellé; Ton Timmers; Charles Rosenberg
The Medicago truncatula DMI3 gene encodes a calcium- and calmodulin-dependent protein kinase (CCaMK) that is necessary for the establishment of both rhizobial and mycorrhizal symbioses. The two symbiotic signaling pathways diverge downstream of DMI3; therefore, it has been proposed that legumes have evolved a particular form of CCaMK, acting like a switch able both to discriminate between rhizobial and mycorrhizal calcium signatures and to trigger the appropriate downstream signaling pathway. To test this hypothesis, we examined whether a CCaMK gene from a nonlegume species was able to restore the rhizobial symbiotic properties of a M. truncatula dmi3 mutant. Our results show that a CCaMK gene from rice can restore nodule formation, indicating that CCaMKs from nonlegumes can interpret the calcium signature elicited by rhizobial Nod factors and activate the appropriate downstream target. The nodules did not contain bacteria, which suggests that DMI3 is also involved in the control of the infection process.
Molecular Microbiology | 1996
Frédéric Debellé; Claire Plazanet; Philippe Roche; Céline Pujol; Arlette Savagnac; Charles Rosenberg; Jean-Claude Promé; Jean Dénarié
Rhizobia synthesize mono‐N‐acylated chitooligosaccharide signals, called Nod factors, that are required for the specific infection and nodulation of their legume hosts. The biosynthesis of Nod factors is under the control of nodulation (nod) genes, including the nodABC genes present in all rhizobial species. The N‐acyl substitution can vary between species and can play a role in host specificity. In Rhizobium meliloti, an alfalfa symbiont, the acyl chain is a C16 unsaturated or a (ω‐1) hydroxylated fatty acid, whereas in Rhizobium tropici, a bean symbiont, it is vaccenic acid (C18:1). We constructed R. meliloti derivatives having a non‐polar deletion of nodA, and carrying a plasmid with either the R. meliloti or the R. tropici nodA gene. The strain with the R. tropici nodA gene produced Nod factors acylated by vaccenic acid, instead of the C16 unsaturated or hydroxylated fatty acids characteristic of R. meliloti Nod factors, and infected and nodulated alfalfa with a significant delay. These results show that NodA proteins of R. meliloti and R. tropici specify the N‐acylation of Nod factors by different fatty acids, and that allelic variation of the common nodA gene can contribute to the determination of host range.
Molecular Microbiology | 1999
G. P. Yang; Frédéric Debellé; Arlette Savagnac; Myriam Ferro; Odile Schiltz; Fabienne Maillet; Danielle Promé; Michel Treilhou; Corinne Vialas; Kristina Lindstrom; Jean Dénarié; Jean-Claude Promé
Rhizobia are symbiotic bacteria that synthesize lipochitooligosaccharide Nod factors (NFs), which act as signal molecules in the nodulation of specific legume hosts. Based on the structure of their N‐acyl chain, NFs can be classified into two categories: (i) those that are acylated with fatty acids from the general lipid metabolism; and (ii) those (= αU‐NFs) that are acylated by specific α,β‐unsaturated fatty acids (containing carbonyl‐conjugated unsaturation(s)). Previous work has described how rhizobia that nodulate legumes of the Trifolieae and Vicieae tribes produce αU‐NFs. Here, we have studied the structure of NFs from two rhizobial species that nodulate important genera of the Galegeae tribe, related to Trifolieae and Vicieae. Three strains of Mesorhizobium huakuii, symbionts of Astragalus sinicus, produced as major NFs, pentameric lipochitooligosaccharides O‐sulphated and partially N‐glycolylated at the reducing end and N‐acylated, at the non‐reducing end, by a C18:4 fatty acid. Two strains of Rhizobium galegae, symbionts of Galega sp., produced as major NFs, tetrameric O‐carbamoylated NFs that could be O‐acetylated on the glucosamine residue next to the non‐reducing terminal glucosamine and were N‐acylated by C18 and C20 α,β‐unsaturated fatty acids. These results suggest that legumes nodulated by rhizobia synthesizing αU‐NFs constitute a phylogenetic cluster in the Galegoid phylum.
Molecular Plant-microbe Interactions | 2002
Jean-Michel Ané; Julien Lévy; Philippe Thoquet; Olga Kulikova; Françoise de Billy; Varma Penmetsa; Dong-Jin Kim; Frédéric Debellé; Charles Rosenberg; Douglas R. Cook; Ton Bisseling; Thierry Huguet; Jean Dénarié
The DMI1, DMI2, and DMI3 genes of Medicago truncatula, which are required for both nodulation and mycorrhization, control early steps of Nod factor signal transduction. Here, we have used diverse approaches to pave the way for the map-based cloning of these genes. Molecular amplification fragment length polymorphism markers linked to the three genes were identified by bulked segregant analysis. Integration of these markers into the general genetic map of M. truncatula revealed that DMI1, DMI2, and DMI3 are located on linkage groups 2, 5, and 8, respectively. Cytogenetic studies using fluorescent in situ hybridization (FISH) on mitotic and pachytene chromosomes confirmed the location of DMI1, DMI2, and DMI3 on chromosomes 2, 5, and 8. FISH-pachytene studies revealed that the three genes are in euchromatic regions of the genome, with a ratio of genetic to cytogenetic distances between 0.8 and 1.6 cM per microm in the DMI1, DMI2, and DMI3 regions. Through grafting experiments, we showed that the genetic control of the dmi1, dmi2, and dmi3 nodulation phenotypes is determined at the root level. This means that mutants can be transformed by Agrobacterium rhizogenes to accelerate the complementation step of map-based cloning projects for DMI1, DMI2, and DMI3.
Molecular Microbiology | 1990
Fabienne Maillet; Frédéric Debellé; Jean Dénarié
To analyse the regulation of the nodulation (nod) genes of Rhizobium meliloti RCR2011 we have isolated lacZ gene fusions to a number of common, host‐range and regulatory nod genes, using the mini‐MU‐lac bacteriophage transposon Mud II1734. Common (nodA, nodC, nod region IIa) and host‐range (nodE, nodG, nodH) genes were found to be regulated similarly. They were activated (i) by the regulatory nodD1 gene in the presence of flavones such as chrysoeriol, luteolin and 7,3′,4′‐trihydroxyflavone, (ii) by nodD2 in the presence of alfalfa root exudate but not with the NodD1‐activating flavones, and (iii) by the regulatory genes syrM‐nodD3 even in the absence of plant inducers. Thus common and host‐range nod genes belong to the same regulon. In contrast to the nodD1 gene, the regulatory nodD3 gene was not expressed constitutively and exhibited a complex regulation. It required syrM for expression, was activated by nodD1 in the presence of luteolin and was positively autoregulated.
Genome Biology | 2014
Damien Formey; Erika Sallet; Christine Lelandais-Brière; Cécile Ben; Pilar Bustos-Sanmamed; Andreas Niebel; Florian Frugier; Jean Philippe Combier; Frédéric Debellé; Caroline Hartmann; Julie Poulain; Frédérick Gavory; Patrick Wincker; Christophe Roux; Laurent Gentzbittel; Jérôme Gouzy; Martin Crespi
BackgroundLegume roots show a remarkable plasticity to adapt their architecture to biotic and abiotic constraints, including symbiotic interactions. However, global analysis of miRNA regulation in roots is limited, and a global view of the evolution of miRNA-mediated diversification in different ecotypes is lacking.ResultsIn the model legume Medicago truncatula, we analyze the small RNA transcriptome of roots submitted to symbiotic and pathogenic interactions. Genome mapping and a computational pipeline identify 416 miRNA candidates, including known and novel variants of 78 miRNA families present in miRBase. Stringent criteria of pre-miRNA prediction yield 52 new mtr-miRNAs, including 27 miRtrons. Analyzing miRNA precursor polymorphisms in 26 M. truncatula ecotypes identifies higher sequence polymorphism in conserved rather than Medicago-specific miRNA precursors. An average of 19 targets, mainly involved in environmental responses and signalling, is predicted per novel miRNA. We identify miRNAs responsive to bacterial and fungal pathogens or symbionts as well as their related Nod and Myc-LCO symbiotic signals. Network analyses reveal modules of new and conserved co-expressed miRNAs that regulate distinct sets of targets, highlighting potential miRNA-regulated biological pathways relevant to pathogenic and symbiotic interactions.ConclusionsWe identify 52 novel genuine miRNAs and large plasticity of the root miRNAome in response to the environment, and also in response to purified Myc/Nod signaling molecules. The new miRNAs identified and their sequence variation across M. truncatula ecotypes may be crucial to understand the adaptation of root growth to the soil environment, notably in the agriculturally important legume crops.