Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Frederic E. Pitre is active.

Publication


Featured researches published by Frederic E. Pitre.


Planta | 2003

Molecular characterization of two plant BI-1 homologues which suppress Bax-induced apoptosis in human 293 cells

Nathalie Bolduc; Mario Ouellet; Frederic E. Pitre; Louise F. Brisson

Abstract. To date, few homologues of animal programmed cell death (PCD) regulators have been identified in plants. Among these is the plant Bax Inhibitor-1 (BI-1) protein, which possesses, like its human counterpart, the ability to suppress Bax-induced lethality in yeast cells. As the role of BI-1 in the regulation of plant PCD remains to be elucidated, we cloned BnBI-1 and NtBI-1 from cDNA libraries of oilseed rape (Brassica napus L.) and tobacco (Nicotiana tabacum L.). The analysis of the deduced amino acid sequences of BnBI-1 and NtBI-1 indicated that these proteins share a relatively high level of identity with other plant BI-1 proteins (73–95%) as well as with animal BI-1 proteins (26–42%). Comparative analysis with other available plant BI-1 proteins allowed the establishment of a structural model presenting seven transmembrane domains. Moreover, transient co-transfection of Bax with BnBI-1 or NtBI-1 in human embryonic kidney 293 cells revealed that both proteins can substantially inhibit apoptosis induced by Bax overexpression. Localization studies were also conducted using stable transformation of tobacco BY-2 cells and Saccharomyces cerevisiae, or transient expression in tobacco leaves, with the fusion protein BnBI-1GFP under control of the cauliflower mosaic virus 35S promoter. All transformants showed a fluorescence pattern of distribution typical of an endoplasmic reticulum (ER) protein. Results from differential permeabilization experiments in BY-2 cells expressing BnBI-1GFP also showed that the C-terminus is located on the cytosolic side of the ER. Taken altogether, our results suggest that BI-1 is evolutionarily conserved and could act as a key regulator of a death pathway common to plants and animals.


Trends in Biotechnology | 2014

Increasing phytoremediation efficiency and reliability using novel omics approaches

Terrence H. Bell; Simon Joly; Frederic E. Pitre; Etienne Yergeau

Phytoremediation is a cost-effective green alternative to traditional soil remediation technologies, but has experienced varied success in practice. The recent omics revolution has led to leaps in our understanding of soil microbial communities and plant metabolism, and some of the conditions that promote predictable activity in contaminated soils and heterogeneous environments. Combinations of omics tools and new bioinformatics approaches will allow us to understand integrated activity patterns between plants and microbes, and determine how this metaorganism can be modified to maximize growth, appropriate assembly of microbial communities, and, ultimately, phytoremediation activity. Here we provide an overview of how new omics-mediated discoveries can potentially be translated into an effective and reliable environmental technology.


Bioenergy Research | 2010

QTL Mapping of Enzymatic Saccharification in Short Rotation Coppice Willow and Its Independence from Biomass Yield

Nicholas Jb Brereton; Frederic E. Pitre; Steven J. Hanley; Michael J. Ray; A. Karp; Richard J. Murphy

Short rotation coppice (SRC) willows (Salix spp.) are fast-growing woody plants which can achieve high biomass yields over short growth cycles with low agrochemical inputs. Biomass from SRC willow is already used for heat and power, but its potential as a source of lignocellulose for liquid transport biofuels has still to be assessed. In bioethanol production from lignocellulose, enzymatic saccharification is used as an approach to release glucose from cellulose in the plant cell walls. In this study, 138 genotypes of a willow mapping population were used to examine variation in enzymatic glucose release from stem biomass to study relationships between this trait and biomass yield traits and to identify quantitative trait loci (QTL) associated with enzymatic saccharification yield. Significant natural variation was found in glucose yields from willow stem biomass. This trait was independent of biomass yield traits. Four enzyme-derived glucose QTL were mapped onto chromosomes V, X, XI, and XVI, indicating that enzymatic saccharification yields are under significant genetic influence. Our results show that SRC willow has strong potential as a source of bioethanol and that there may be opportunities to improve the breeding programs for willows for increasing enzymatic saccharification yields and biofuel production.


Tree Physiology | 2010

High nitrogen fertilization and stem leaning have overlapping effects on wood formation in poplar but invoke largely distinct molecular pathways

Frederic E. Pitre; Florian Lafarguette; Brian Boyle; Nathalie Pavy; Sébastien Caron; Nancy Dallaire; Pier-Luc Poulin; Mario Ouellet; Marie-Josée Morency; Nicholas Wiebe; Emilia Ly Lim; Aurélie Urbain; Grégory Mouille; Janice E. K. Cooke; John MacKay

Previous studies indicated that high nitrogen fertilization may impact secondary xylem development and alter fibre anatomy and composition. The resulting wood shares some resemblance with tension wood, which has much thicker cell walls than normal wood due to the deposition of an additional layer known as the G-layer. This report compares the short-term effects of high nitrogen fertilization and tree leaning to induce tension wood, either alone or in combination, upon wood formation in young trees of Populus trichocarpa (Torr. & Gray) × P. deltoides Bartr. ex Marsh. Fibre anatomy, chemical composition and transcript profiles were examined in newly formed secondary xylem. Each of the treatments resulted in thicker cell walls relative to the controls. High nitrogen and tree leaning had overlapping effects on chemical composition based on Fourier transform infrared analysis, specifically indicating that secondary cell wall composition was shifted in favour of cellulose and hemicelluloses relative to lignin content. In contrast, the high-nitrogen trees had shorter fibres, whilst the leaning trees had longer fibres that the controls. Microarray transcript profiling carried out after 28 days of treatment identified 180 transcripts that accumulated differentially in one or more treatments. Only 10% of differentially expressed transcripts were affected in all treatments relative to the controls. Several of the affected transcripts were related to carbohydrate metabolism, secondary cell wall formation, nitrogen metabolism and osmotic stress. RT-qPCR analyses at 1, 7 and 28 days showed that several transcripts followed very different accumulation profiles in terms of rate and level of accumulation, depending on the treatment. Our findings suggest that high nitrogen fertilization and tension wood induction elicit largely distinct and molecular pathways with partial overlap. When combined, the two types of environmental cue yielded additive effects.


Archive | 2013

Short-Rotation Coppice of Willows for the Production of Biomass in Eastern Canada

Werther Guidi; Frederic E. Pitre; Michel Labrecque

The production of energy by burning biomass (i.e. bioenergy), either directly or through transformation, is one of the most promising alternative sources of sustainable energy. Contrary to fossil fuels, bioenergy does not necessarily result in a net long-term increase in atmospheric greenhouse gases, particularly when production methods take this concern into account. Converting forests, peatlands, or grasslands to production of food-crop based biofuels may release up to 400 times more CO2 than the annual greenhouse gas (GHG) reductions that these biofuels would provide by displacing fossil fuels. On the other hand, biofuels from biomass grown on degraded and abandoned agricultural lands planted with perennials do not have a negative effect on carbon emissions [1]. In addition, when properly managed, bioenergy can enhance both agricultural and rural development by increasing agricultural productivity, creating new opportunities for revenue and employment, and improving access to modern energy services in rural areas, both in developed and developing countries [2].


PLOS ONE | 2015

Phylogenetic relationships of American willows (Salix L., Salicaceae).

Aurélien Lauron-Moreau; Frederic E. Pitre; George W. Argus; Michel Labrecque; Luc Brouillet

Salix L. is the largest genus in the family Salicaceae (450 species). Several classifications have been published, but taxonomic subdivision has been under continuous revision. Our goal is to establish the phylogenetic structure of the genus using molecular data on all American willows, using three DNA markers. This complete phylogeny of American willows allows us to propose a biogeographic framework for the evolution of the genus. Material was obtained for the 122 native and introduced willow species of America. Sequences were obtained from the ITS (ribosomal nuclear DNA) and two plastid regions, matK and rbcL. Phylogenetic analyses (parsimony, maximum likelihood, Bayesian inference) were performed on the data. Geographic distribution was mapped onto the tree. The species tree provides strong support for a division of the genus into two subgenera, Salix and Vetrix. Subgenus Salix comprises temperate species from the Americas and Asia, and their disjunction may result from Tertiary events. Subgenus Vetrix is composed of boreo-arctic species of the Northern Hemisphere and their radiation may coincide with the Quaternary glaciations. Sixteen species have ambiguous positions; genetic diversity is lower in subg. Vetrix. A molecular phylogeny of all species of American willows has been inferred. It needs to be tested and further resolved using other molecular data. Nonetheless, the genus clearly has two clades that have distinct biogeographic patterns.


Plant Biosystems | 2010

Estimating root biomass in Salix viminalis × Salix schwerinii cultivar "Olof" using the electrical capacitance method.

Frederic E. Pitre; N. J. B. Brereton; S. Audoire; Goetz M. Richter; I. Shield; A. Karp

Abstract Non‐destructive assessment of root systems is important in order to understand and optimise the potential of resource capture and allocation by the plant. We studied the relationships between electrical capacitance (EC) and the below‐ and above‐ground biomass of willows. Cuttings of Salix viminalis × Salix schwerinii cv. Olof were maintained in pots and root development was followed up using a portable capacitance meter over the course of 2.5 months. Pot observations were compared with excavation of two‐year‐old established trees. A strong significant linear relationship (R 2 = 0.81, p < 0.001) was obtained between EC and root biomass (dry weight [DW]) for the pot experiment. EC also showed good correlations with stem and leaf biomass, as well as with stem height. In the excavated willow trees, there was a strong logarithmic relationship between EC and root biomass (R 2 = 0.66, p < 0.001). These results suggest that EC is a good estimator of below‐ground biomass in willow and may become useful in screening varieties for differences in root biomass traits, especially in distinguishing below‐ground resource allocation at an early stage.


Tree Physiology | 2014

Insights into nitrogen allocation and recycling from nitrogen elemental analysis and 15N isotope labelling in 14 genotypes of willow.

Nicholas Jb Brereton; Frederic E. Pitre; I. Shield; Steven J. Hanley; Michael J. Ray; Richard J. Murphy; A. Karp

Minimizing nitrogen (N) fertilization inputs during cultivation is essential for sustainable production of bioenergy and biofuels. The biomass crop willow (Salix spp.) is considered to have low N fertilizer requirements due to efficient recycling of nutrients during the perennial cycle. To investigate how successfully different willow genotypes assimilate and allocate N during growth, and remobilize and consequently recycle N before the onset of winter dormancy, N allocation and N remobilization (to and between different organs) were examined in 14 genotypes of a genetic family using elemental analysis and 15N as a label. Cuttings were established in pots in April and sampled in June, August and at onset of senescence in October. Biomass yield of the trees correlated well with yields recorded in the field. Genotype-specific variation was observed for all traits measured and general trends spanning these sampling points were identified when trees were grouped by biomass yield. Nitrogen reserves in the cutting fuelled the entirety of the canopy establishment, yet earlier cessation of this dependency was linked to higher biomass yields. The stem was found to be the major N reserve by autumn, which constitutes a major source of N loss at harvest, typically every 2–3 years. These data contribute to understanding N remobilization in short rotation coppice willow and to the identification of traits that could potentially be selected for in breeding programmes to further improve the sustainability of biomass production.


International Journal of Phytoremediation | 2015

Potential of Selected Canadian Plant Species for Phytoextraction of Trace Elements From Selenium-Rich Soil Contaminated by Industrial Activity

Werther Guidi Nissim; Séverine Hasbroucq; Hafssa Kadri; Frederic E. Pitre; Michel Labrecque

In this preliminary screening study, we tested the phytoextraction potential of nine Canadian native/well-adapted plant species on a soil highly polluted by trace elements (TE) from a copper refinery. Plant physiological parameters and soil cover index were monitored for a 12-week period. At the end of the trial, biomass yield, bioconcentration (BFC) and translocation (TF) factors for the main TE as well as phytoextraction potential were determined. Most plants were severely injured by the high pollution levels, showing symptoms of toxicity including chlorosis, mortality and very low biomass yield. However, Indian mustard showed the highest selenium extraction potential (65 mg m−2), even under harsh growing conditions. Based on our results, tall fescue and ryegrass, which mainly stored As, Cu, Pb and Zn within roots, could be used effectively for phytostabilization.


Plant Physiology | 2016

Comparative Transcriptomic Approaches Exploring Contamination Stress Tolerance in Salix sp. Reveal the Importance for a Metaorganismal de Novo Assembly Approach for Nonmodel Plants

Nicholas J. B. Brereton; Emmanuel González; Julie Marleau; Werther Guidi Nissim; Michel Labrecque; Simon Joly; Frederic E. Pitre

Shared metatranscriptomic responses to petroleum hydrocarbon contamination in ten cultivars of field-grown willow expose native and foreign organism gene expression of effective phytoremediation. Metatranscriptomic study of nonmodel organisms requires strategies that retain the highly resolved genetic information generated from model organisms while allowing for identification of the unexpected. A real-world biological application of phytoremediation, the field growth of 10 Salix cultivars on polluted soils, was used as an exemplar nonmodel and multifaceted crop response well-disposed to the study of gene expression. Sequence reads were assembled de novo to create 10 independent transcriptomes, a global transcriptome, and were mapped against the Salix purpurea 94006 reference genome. Annotation of assembled contigs was performed without a priori assumption of the originating organism. Global transcriptome construction from 3.03 billion paired-end reads revealed 606,880 unique contigs annotated from 1588 species, often common in all 10 cultivars. Comparisons between transcriptomic and metatranscriptomic methodologies provide clear evidence that nonnative RNA can mistakenly map to reference genomes, especially to conserved regions of common housekeeping genes, such as actin, α/β-tubulin, and elongation factor 1-α. In Salix, Rubisco activase transcripts were down-regulated in contaminated trees across all 10 cultivars, whereas thiamine thizole synthase and CP12, a Calvin Cycle master regulator, were uniformly up-regulated. De novo assembly approaches, with unconstrained annotation, can improve data quality; care should be taken when exploring such plant genetics to reduce de facto data exclusion by mapping to a single reference genome alone. Salix gene expression patterns strongly suggest cultivar-wide alteration of specific photosynthetic apparatus and protection of the antenna complexes from oxidation damage in contaminated trees, providing an insight into common stress tolerance strategies in a real-world phytoremediation system.

Collaboration


Dive into the Frederic E. Pitre's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Simon Joly

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mario Ouellet

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge