Frédéric Gumy
École Polytechnique Fédérale de Lausanne
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Frédéric Gumy.
Spectroscopy Letters | 2004
Anne-Sophie Chauvin; Frédéric Gumy; Daniel Imbert; Jean-Claude G. Bünzli
Abstract Aqueous solutions of europium(III) and terbium(III) tris(dipicolinates), around physiological pH are shown to be convenient secondary standards in the determination of quantum yields of lanthanide complexes containing these ions. Conditions for which a strict linearity is observed between the concentration of the solutions and the emission intensity are established. The speciation in these solutions, which contain a non‐negligible amount of bis species is presented and discussed on the basis of both stability constants and lifetime determinations of the Eu(5D0) level. The quantum yield Q L Eu displays a strong pH‐dependence: for a solution with an absorbance of 0.30, it increases sharply from about 2% at pH 2.5 to reach 11.5–12.5% in the pH range of 6–9. The proposed standard for EuIII is a solution of Cs3[Eu(dpa)3] 7.5 × 10−5 M in tris buffer 0.1 M (absorbance = 0.20) with a quantum yield of 13.5% ± 1.5% under excitation at 279 nm. For TbIII, we propose a standard solution of Cs3[Tb(dpa)3] 6.5 × 10−5 M in tris buffer 0.1 M (absorbance = 0.18) with a quantum yield of 26.5% ± 2% under excitation at 279 nm. Despite the speciation between bis and tris complexes, these two standard buffered solutions present a constant quantum yield within a reasonably large range of concentration and they are easy to handle, which makes them adequate for laboratory use.
Physical Chemistry Chemical Physics | 2009
Annina Aebischer; Frédéric Gumy; Jean-Claude G. Bünzli
The efficiency with which the surroundings of trivalent lanthanide ions sensitize their luminescence (eta(sens)) is a key parameter in the design of highly emitting molecular edifices and materials. Evaluation of eta(sens) requires the measurement of the overall and intrinsic quantum yields obtained upon ligand and metal excitation, respectively. We describe a modified integration sphere enabling absolute determination of these quantities on small amounts of solid samples or solutions (60 muL). The sphere is tested for linear response of emitted versus absorbed light intensities with increasing concentration of Cs(3)[Ln(dpa)(3)] solutions (Ln = Eu, Tb). The overall (Q = 29 +/- 2%) and intrinsic (Q = 41 +/- 2%) quantum yields obtained for Eu allow the direct calculation of eta(sens) (71 +/- 6%) while the radiative lifetime (tau(rad) = 4.1 +/- 0.3 ms) is calculated from Q and the observed lifetime. The intrinsic quantum yield matches the value extracted from emission parameters using the simplified equation proposed by Werts et al. but, on the other hand, the theoretical estimate using spontaneous transition probabilities calculated from Judd-Ofelt (JO) parameters is off by -25% (3.15 ms). In the case of Cs(3)[Tb(dpa)(3)], the molar absorption coefficient of the (5)D(4)<--(7)F(6) transition is too small to measure Q for the solution but this quantity could be determined for the microcrystalline sample (72 +/- 5%, tau(rad) = 1.9 +/- 0.1 ms). In this case, the JO theoretical estimate leads to a much too short tau(rad) value. The large difference in eta(sens) for microcrystalline samples of Eu (85%) and Tb (42%) tris(dipicolinates) is attributed to back energy transfer in the latter compound consecutive to a sizeable overlap between the (5)D(4)-->(7)F(6) emission and the absorption spectrum of the dipicolinate triplet, this overlap being smaller in the case of the solution. The overall quantum yield of Na(3)[Yb(dpa)(3)] in aqueous solution is very low (0.015 +/- 0.002%) due to both poor sensitization efficiency (8%) and small intrinsic quantum yield (Q = 0.178 +/- 0.003%; tau(rad) = 1.31 +/- 0.02 ms). For evaluating intrinsic quantum yields of Yb in aqueous solutions of coordination compounds from lifetimes, a value of 1.2-1.3 ms is recommended.
Inorganic Chemistry | 2008
Carole Daiguebonne; Nicolas Kerbellec; Olivier Guillou; Jean-Claude G. Bünzli; Frédéric Gumy; Laure Catala; Talal Mallah; Nathalie Audebrand; Yves Gérault; Kevin Bernot; Guillaume Calvez
Reaction in water between rare earth ions (Ln = Y, La-Tm, except Pm) and the sodium salt of terephthalic acid leads to a family of lanthanide-based coordination polymers of general formula [Ln2(C8H4O4)3(H2O)4] n with Ln = La-Tm or Y. The isostructurality of the compounds with the previously reported Tb-containing polymer is ascertained on the basis of their X-ray powder diffraction diagrams. The coordination water molecules can be reversibly removed without destroying the crystal structure for compounds involving one of the lighter lanthanide ions (La-Eu). For compounds involving one of the heavier lanthanide ions (Tb-Tm) or yttrium, a structural change occurs during the drying process. X-ray diffraction data show this new anhydrous phase corresponding to the linking of pairs of Er(III) ions through mu-carboxylate bridges. Porosity profiles calculated for the anhydrous phases of Tb(III) and Er(III) show the presence of channels with very small sections. The luminescent properties of all the compounds have been recorded and the two most luminescent polymers, namely, the europium- and the terbium-containing ones, have been studied in more detail. Tb(III)-containing compounds display large quantum yields, up to 43%. Polyvinylpyrrolidone nanoparticles doped with [Ln2(C8H4O4)3(H2O)4] n (Ln = Eu, Tb, Er) have also been synthesized and characterized. The encapsulation of the coordination polymers results in somewhat reduced luminescence intensities and lifetime, but the nanoparticles can be dispersed in water and remain unchanged in this medium for more than 20 h.
Chemistry: A European Journal | 2009
Emmanuel Deiters; Bo Song; Anne-Sophie Chauvin; Caroline Vandevyver; Frédéric Gumy; Jean-Claude G. Bünzli
A series of homoditopic ligands H(2)L(CX) (X=4-6) has been designed to self-assemble with lanthanide ions (Ln(III)), resulting in neutral bimetallic helicates of overall composition [Ln(2)(L(CX))(3)] with the aim of testing the influence of substituents on the photophysical properties, particularly the excitation wavelength. The complex species are thermodynamically stable in water (log beta(23) in the range 26-28 at pH 7.4) and display a metal-ion environment with pseudo-D(3) symmetry and devoid of coordinated water molecules. The emission of Eu(III), Tb(III), and Yb(III) is sensitised to various extents, depending on the properties of the ligand donor levels. The best helicate is [Eu(2)(L(C5))(3)] with excitation maxima at 350 and 365 nm and a quantum yield of 9 %. The viability of cervix cancer HeLa cells is unaffected when incubated with up to 500 mum of the chelate during 24 h. The helicate permeates into the cells by endocytosis and locates into lysosomes, which co-localise with the endoplasmatic reticulum, as demonstrated by counterstaining experiments. The relatively long excitation wavelength allows easy recording of bright luminescent images on a confocal microscope (lambda(exc)=405 nm). The new lanthanide bioprobe remains undissociated in the cell medium, and is amenable to facile derivatisation. Examination of data for seven Eu(III) and Tb(III) bimetallic helicates point to shortcomings in the phenomenological rules of thumb between the energy gap DeltaE((3)pipi*-(5)D(J)) and the sensitisation efficiency of the ligands.
Chemical Communications | 2007
Markus Albrecht; Olga Osetska; Jürgen Klankermayer; Roland Fröhlich; Frédéric Gumy; Jean-Claude G. Bünzli
Three novel 2-carboxamide-8-hydroxyquinoline derivatives wrap helically around trivalent lanthanide ions to form monometallic 3 : 1 complexes possessing strong NIR emission.
Journal of Physical Chemistry A | 2008
Svetlana V. Eliseeva; O. V. Kotova; Frédéric Gumy; Sergey N. Semenov; Vadim G. Kessler; Leonid S. Lepnev; Jean-Claude G. Bünzli; N. P. Kuz'mina
Two types of dimeric complexes [Ln2(hfa)6(mu2-O(CH2)2NHMe2)2] and [Ln(thd)2(mu2,eta2-O(CH2)2NMe2)]2 (Ln = YIII, EuIII, GdIII, TbIII, TmIII, LuIII; hfa- = hexafluoroacetylacetonato, thd- = dipivaloylmethanato) are obtained by reacting [Ln(hfa)3(H2O)2] and [Ln(thd)3], respectively, with N,N-dimethylaminoethanol in toluene and are fully characterized. X-ray single crystal analysis performed for the TbIII compounds confirms their dimeric structure. The coordination mode of N,N-dimethylaminoethanol depends on the nature of the beta-diketonate. In [Tb2(hfa)6(mu2-O(CH2)2NHMe2)2], eight-coordinate TbIII ions adopt distorted square antiprismatic coordination environments and are O-bridged by two zwitterionic N,N-dimethylaminoethanol ligands with a Tb1...Tb2 separation of 3.684(1) A. In [Tb(thd)2(mu2,eta2-O(CH2)2NMe2)]2, the N,N-dimethylaminoethanol acts as chelating-bridging O,N-donor anion and the TbIII ions are seven-coordinate; the Tb1...Tb1A separation amounts to 3.735(2) A within centrosymmetric dimers. The dimeric complexes are thermally stable up to 180 degrees C, as shown by thermogravimetric analysis, and their volatility is sufficient for quantitative sublimation under reduced pressure. The EuIII and TbIII dimers display metal-centered luminescence, particularly [Eu2(hfa)6(O(CH2)2NHMe2)2] (quantum yield Q(L)Ln = 58%) and [Tb(thd)2(O(CH2)2NMe2)]2 (32%). Consideration of energy migration paths within the dimers, based on the study of both pure and EuIII- or TbIII-doped (0.01-0.1 mol %) LuIII analogues, leads to the conclusion that both the beta-diketone and N,N-dimethylaminoethanol ligands contribute significantly to the sensitization process of the EuIII luminescence. The ancillary ligand increases considerably the luminescence of [Eu2(hfa)6(O(CH2)2NHMe2)2], compared to [Ln(hfa)3(H2O)2], through the formation of intra-ligand states while it is detrimental to TbIII luminescence in both beta-diketonates. Thin films of the most luminescent compound [Eu2(hfa)6(O(CH2)2NHMe2)2] obtained by vacuum sublimation display photophysical properties analogous to those of the solid-state sample, thus opening perspectives for applications in electroluminescent devices.
Inorganic Chemistry | 2009
Nail M. Shavaleev; Rosario Scopelliti; Frédéric Gumy; Jean-Claude G. Bünzli
A facile synthesis of benzothiazole- and benzoxazole-substituted pyridine-2-carboxylic acids has been developed. These ligands form mononuclear nine-coordinate complexes [Ln(kappa(3)-ligand)(2)(kappa(1)-ligand)(H(2)O)(2)] with light and heavy trivalent lanthanides, as established from the X-ray analysis of 11 complexes. A crystal structure of a minor product, the anhydrous nine-coordinate complex [Eu(kappa(3)-L)(3)], has also been determined. Photophysical studies of gadolinium chelates indicate that the triplet states of the new ligands are located at 20400-21400 cm(-1). The ligands are good sensitizers of the europium luminescence with ligand-to-metal energy transfer efficiency in the range 60-100%. The overall quantum yields of the europium emission are substantial, 12-14% in the solid state, and increase to 29-39% upon replacement of two metal-coordinated water molecules with dimethylsulfoxide in solution. The luminescence of near-infrared emitting lanthanides is also sensitized, but quantum yields are much smaller, reaching 0.17% for neodymium and 1.25% for ytterbium in DMSO, while energy transfer efficiencies for these two ions are below 50%.
Inorganic Chemistry | 2009
Nail M. Shavaleev; Rosario Scopelliti; Frédéric Gumy; Jean-Claude G. Bünzli
New heterobinuclear lanthanide complexes with benzoxazole-substituted 8-hydroxyquinolines, [Ln(ligand)(2)(mu-ligand)(2)Na] (Ln: Yb, Lu), have been prepared and their structure established by X-ray crystallography, (1)H NMR spectroscopy, and photophysical studies. The complexes display efficient ligand-sensitized near-infrared luminescence of ytterbium at 925-1075 nm with lifetimes and quantum yields as high as 22 micros and 3.7%, in the solid state, and 20 micros and 2.6% in CH(2)Cl(2) solution, respectively. These quantum yields are the highest reported to date for ytterbium complexes with organic ligands containing C-H bonds. A long-wavelength and intense intraligand charge-transfer transition (lambda(max) = 446-456 nm; epsilon approximately 1.2 x 10(4) M(-1) cm(-1)) allows for the excitation of infrared luminescence with visible light up to 600 nm. Remarkable features of these complexes include (i) quantitative ligand-to-Yb(III) energy transfer resulting in high overall efficiency of the ytterbium luminescence, (ii) unusually short radiative lifetime of the Yb(III) ion, 706-745 micros for solutions in CH(2)Cl(2), calculated from the f-f absorption spectra, and 513-635 micros estimated for solid state samples from quantum yield and lifetime data, and (iii) the unexpected large influence of second-sphere composition on the radiative lifetime of ytterbium.
ACS Nano | 2013
Ping-Ping Fang; Shu Chen; Haiqiang Deng; Micheál D. Scanlon; Frédéric Gumy; Hye Jin Lee; Dmitry Momotenko; Véronique Amstutz; Fernando Cortés-Salazar; Carlos M. Pereira; Zhilin Yang; Hubert H. Girault; 杨志林
Gold nanoparticle (Au NP) mirrors, which exhibit both high reflectance and electrical conductance, were self-assembled at a [heptane + 1,2-dichloroethane]/water liquid/liquid interface. The highest reflectance, as observed experimentally and confirmed by finite difference time domain calculations, occurred for Au NP films consisting of 60 nm diameter NPs and approximate monolayer surface coverage. Scanning electrochemical microscopy approach curves over the interfacial metallic NP films revealed a transition from an insulating to a conducting electrical material on reaching a surface coverage at least equivalent to the formation of a single monolayer. Reflectance and conductance transitions were interpreted as critical junctures corresponding to a surface coverage that exceeded the percolation threshold of the Au NP films at the [heptane + 1,2-dichloroethane]/water interface.
Inorganic Chemistry | 2009
Nail M. Shavaleev; Frédéric Gumy; Rosario Scopelliti; Jean-Claude G. Bünzli
The need for efficient and photostable lanthanide luminescent materials is dramatically increasing, in particular with respect to their growing application in lighting devices and biosciences. To this end, we have developed a facile synthesis of benzimidazole-substituted pyridine-2-carboxylic acids that efficiently sensitize europium luminescence in homoleptic neutral nine-coordinate complexes with overall quantum yields of 56-61% and lifetimes of 2.1-2.6 ms in the solid state at ambient conditions. The complexes reported here are potential synthons for the design of a variety of luminescent materials.