Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Frederic J. de Sauvage is active.

Publication


Featured researches published by Frederic J. de Sauvage.


Journal of Biological Chemistry | 2003

Interleukin-23 Promotes a Distinct CD4 T Cell Activation State Characterized by the Production of Interleukin-17

Sudeepta Aggarwal; Nico Ghilardi; Ming-Hong Xie; Frederic J. de Sauvage; Austin L. Gurney

Interleukin (IL)-17 is a pro-inflammatory cytokine that is produced by activated T cells. Despite increasing evidence that high levels of IL-17 are associated with several chronic inflammatory diseases including rheumatoid arthritis, psoriasis, and multiple sclerosis, the regulation of its expression is not well characterized. We observe that IL-17 production is increased in response to the recently described cytokine IL-23. We present evidence that murine IL-23, which is produced by activated dendritic cells, acts on memory T cells, resulting in elevated IL-17 secretion. IL-23 also induced expression of the related cytokine IL-17F. IL-23 is a heterodimeric cytokine and shares a subunit, p40, with IL-12. In contrast to IL-23, IL-12 had only marginal effects on IL-17 production. These data suggest that during a secondary immune response, IL-23 can promote an activation state with features distinct from the well characterized Th1 and Th2 profiles.


Nature Medicine | 2008

Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens

Yan Zheng; Patricia Valdez; Dimitry M. Danilenko; Yan Hu; Susan M. Sa; Qian Gong; Alexander R. Abbas; Zora Modrusan; Nico Ghilardi; Frederic J. de Sauvage; Wenjun Ouyang

Infections by attaching and effacing (A/E) bacterial pathogens, such as Escherichia coli O157:H7, pose a serious threat to public health. Using a mouse A/E pathogen, Citrobacter rodentium, we show that interleukin-22 (IL-22) has a crucial role in the early phase of host defense against C. rodentium. Infection of IL-22 knockout mice results in increased intestinal epithelial damage, systemic bacterial burden and mortality. We also find that IL-23 is required for the early induction of IL-22 during C. rodentium infection, and adaptive immunity is not essential for the protective role of IL-22 in this model. Instead, IL-22 is required for the direct induction of the Reg family of antimicrobial proteins, including RegIIIβ and RegIIIγ, in colonic epithelial cells. Exogenous mouse or human RegIIIγ substantially improves survival of IL-22 knockout mice after C. rodentium infection. Together, our data identify a new innate immune function for IL-22 in regulating early defense mechanisms against A/E bacterial pathogens.


Nature | 1998

Activating Smoothened mutations in sporadic basal-cell carcinoma

Jingwu Xie; Maximilien Murone; Shiuh Ming Luoh; Anne M. Ryan; Qimin Gu; Chaohui Zhang; Ching-Wan Lam; Mary Hynes; Audrey Goddard; Arnon Rosenthal; Ervin H. Epstein; Frederic J. de Sauvage

Basal-cell carcinomas (BCCs) are the commonest human cancer. Insight into their genesis came from identification of mutations in the PATCHED gene (PTCH) in patients with the basal-cell nevus syndrome, a hereditary disease characterized by multiple BCCs and by developmental abnormalities. The binding of Sonic hedgehog (SHH) to its receptor, PTCH, is thought to prevent normal inhibition by PTCH of Smoothened (SMO), a seven-span transmembrane protein,. According to this model, the inhibition of SMO signalling is relieved following mutational inactivation of PTCH in basal-cell nevus syndrome. We report here the identification of activating somatic missense mutations in the SMO gene itself in sporadic BCCs from three patients. Mutant SMO, unlike wild type, can cooperate with adenovirus E1A to transform rat embryonic fibroblast cells in culture. Furthermore, skin abnormalities similar to BCCs developed in transgenic murine skin overexpressing mutant SMO. These findings support the role of SMO as a signalling component of the SHH–receptor complex and provide direct evidence that mutated SMO can function as an oncogene in BCCs.


The New England Journal of Medicine | 2009

Inhibition of the hedgehog pathway in advanced basal-cell carcinoma.

Daniel D. Von Hoff; Patricia LoRusso; Charles M. Rudin; Josina C. Reddy; Robert L. Yauch; Raoul Tibes; Glen J. Weiss; M. J. Borad; Christine L. Hann; Julie R. Brahmer; Howard Mackey; Bertram L. Lum; Walter C. Darbonne; James C. Marsters; Frederic J. de Sauvage; Jennifer A. Low

BACKGROUND Mutations in hedgehog pathway genes, primarily genes encoding patched homologue 1 (PTCH1) and smoothened homologue (SMO), occur in basal-cell carcinoma. In a phase 1 clinical trial, we assessed the safety and pharmacokinetics of GDC-0449, a small-molecule inhibitor of SMO, and responses of metastatic or locally advanced basal-cell carcinoma to the drug. METHODS We selected 33 patients with metastatic or locally advanced basal-cell carcinoma to receive oral GDC-0449 at one of three doses; 17 patients received 150 mg per day, 15 patients received 270 mg per day, and 1 patient received 540 mg per day. We assessed tumor responses with the use of Response Evaluation Criteria in Solid Tumors (RECIST), physical examination, or both. Molecular aspects of the tumors were examined. RESULTS The median duration of the study treatment was 9.8 months. Of the 33 patients, 18 had an objective response to GDC-0449, according to assessment on imaging (7 patients), physical examination (10 patients), or both (1 patient). Of the patients who had a response, 2 had a complete response and 16 had a partial response. The other 15 patients had either stable disease (11 patients) or progressive disease (4 patients). Eight grade 3 adverse events that were deemed to be possibly related to the study drug were reported in six patients, including four with fatigue, two with hyponatremia, one with muscle spasm, and one with atrial fibrillation. One grade 4 event, asymptomatic hyponatremia, was judged to be unrelated to GDC-0449. One patient withdrew from the study because of adverse events. We found evidence of hedgehog signaling in tumors that responded to the treatment. CONCLUSIONS GDC-0449, an orally active small molecule that targets the hedgehog pathway, appears to have antitumor activity in locally advanced or metastatic basal-cell carcinoma. (ClinicalTrials.gov number, NCT00607724.)


The New England Journal of Medicine | 2009

Treatment of medulloblastoma with hedgehog pathway inhibitor GDC-0449

Charles M. Rudin; Christine L. Hann; John Laterra; Robert L. Yauch; Christopher A. Callahan; Ling Fu; Thomas Holcomb; Jeremy Stinson; Stephen E. Gould; Barbara Coleman; Patricia LoRusso; Daniel D. Von Hoff; Frederic J. de Sauvage; Jennifer A. Low

Medulloblastoma is the most common malignant brain tumor in children. Aberrant activation of the hedgehog signaling pathway is strongly implicated in the development of some cases of medulloblastoma. A 26-year-old man with metastatic medulloblastoma that was refractory to multiple therapies was treated with a novel hedgehog pathway inhibitor, GDC-0449; treatment resulted in rapid (although transient) regression of the tumor and reduction of symptoms. Molecular analyses of tumor specimens obtained before treatment suggested that there was activation of the hedgehog pathway, with loss of heterozygosity and somatic mutation of the gene encoding patched homologue 1 (PTCH1), a key negative regulator of hedgehog signaling.


Nature | 2008

A paracrine requirement for hedgehog signalling in cancer

Robert L. Yauch; Stephen E. Gould; Suzie J. Scales; Tracy Tang; Hua Tian; Christina P. Ahn; Derek Marshall; Ling Fu; Thomas Januario; Dara Y. Kallop; Michelle Nannini-Pepe; Karen Kotkow; James C. Marsters; Lee L. Rubin; Frederic J. de Sauvage

Ligand-dependent activation of the hedgehog (Hh) signalling pathway has been associated with tumorigenesis in a number of human tissues. Here we show that, although previous reports have described a cell-autonomous role for Hh signalling in these tumours, Hh ligands fail to activate signalling in tumour epithelial cells. In contrast, our data support ligand-dependent activation of the Hh pathway in the stromal microenvironment. Specific inhibition of Hh signalling using small molecule inhibitors, a neutralizing anti-Hh antibody or genetic deletion of smoothened (Smo) in the mouse stroma results in growth inhibition in xenograft tumour models. Taken together, these studies demonstrate a paracrine requirement for Hh ligand signalling in the tumorigenesis of Hh-expressing cancers and have important implications for the development of Hh pathway antagonists in cancer.


Nature | 2010

Diverse somatic mutation patterns and pathway alterations in human cancers.

Zhengyan Kan; Bijay S. Jaiswal; Jeremy Stinson; Vasantharajan Janakiraman; Deepali Bhatt; Howard M. Stern; Peng Yue; Peter M. Haverty; Richard Bourgon; Jianbiao Zheng; Martin Moorhead; Subhra Chaudhuri; Lynn P. Tomsho; Brock A. Peters; Kanan Pujara; Shaun Cordes; David P. Davis; Victoria Carlton; Wenlin Yuan; Li Li; Weiru Wang; Charles Eigenbrot; Joshua S. Kaminker; David A. Eberhard; Paul Waring; Stephan C. Schuster; Zora Modrusan; Zemin Zhang; David Stokoe; Frederic J. de Sauvage

The systematic characterization of somatic mutations in cancer genomes is essential for understanding the disease and for developing targeted therapeutics. Here we report the identification of 2,576 somatic mutations across approximately 1,800 megabases of DNA representing 1,507 coding genes from 441 tumours comprising breast, lung, ovarian and prostate cancer types and subtypes. We found that mutation rates and the sets of mutated genes varied substantially across tumour types and subtypes. Statistical analysis identified 77 significantly mutated genes including protein kinases, G-protein-coupled receptors such as GRM8, BAI3, AGTRL1 (also called APLNR) and LPHN3, and other druggable targets. Integrated analysis of somatic mutations and copy number alterations identified another 35 significantly altered genes including GNAS, indicating an expanded role for galpha subunits in multiple cancer types. Furthermore, our experimental analyses demonstrate the functional roles of mutant GNAO1 (a Galpha subunit) and mutant MAP2K4 (a member of the JNK signalling pathway) in oncogenesis. Our study provides an overview of the mutational spectra across major human cancers and identifies several potential therapeutic targets.


Nature Immunology | 2006

Interleukin 27 limits autoimmune encephalomyelitis by suppressing the development of interleukin 17–producing T cells

Marcel Batten; Jiaoyan Li; Sothy Yi; Noelyn M. Kljavin; Dimitry M. Danilenko; Sophie Lucas; James Lee; Frederic J. de Sauvage; Nico Ghilardi

Interleukin 27 (IL-27) was first characterized as a proinflammatory cytokine with T helper type 1–inducing activity. However, subsequent work has demonstrated that mice deficient in IL-27 receptor (IL-27Rα) show exacerbated inflammatory responses to a variety of challenges, suggesting that IL-27 has important immunoregulatory functions in vivo. Here we demonstrate that IL-27Rα-deficient mice were hypersusceptible to experimental autoimmune encephalomyelitis and generated more IL-17-producing T helper cells. IL-27 acted directly on effector T cells to suppress the development of IL-17-producing T helper cells mediated by IL-6 and transforming growth factor-β. This suppressive activity was dependent on the transcription factor STAT1 and was independent of interferon-γ. Finally, IL-27 suppressed IL-6-mediated T cell proliferation. These data provide a mechanistic explanation for the IL-27-mediated immune suppression noted in several in vivo models of inflammation.


Nature Reviews Drug Discovery | 2006

Targeting the Hedgehog pathway in cancer

Lee L. Rubin; Frederic J. de Sauvage

Several key signalling pathways, such as Hedgehog, Notch, Wnt and BMP–TGFβ–Activin (bone morphogenetic protein–transforming growth factor-β–Activin), are involved in most processes essential to the proper development of an embryo. It is also becoming increasingly clear that these pathways can have a crucial role in tumorigenesis when reactivated in adult tissues through sporadic mutations or other mechanisms. We will focus here on the Hedgehog pathway, which is abnormally activated in most basal cell carcinomas, and discuss potential therapeutic opportunities offered by the progress made in understanding this signalling pathway.


Science | 2009

Smoothened mutation confers resistance to a Hedgehog pathway inhibitor in medulloblastoma.

Robert L. Yauch; Gerrit J. P. Dijkgraaf; Bruno Alicke; Thomas Januario; Christina P. Ahn; Thomas Holcomb; Kanan Pujara; Jeremy Stinson; Christopher A. Callahan; Tracy Tang; J. Fernando Bazan; Zhengyan Kan; Somasekar Seshagiri; Christine L. Hann; Stephen E. Gould; Jennifer A. Low; Charles M. Rudin; Frederic J. de Sauvage

A Smooth(ened) Path to Drug Resistance The Hedgehog (Hh) signaling pathway has emerged as a key contributor to the growth of medulloblastoma, an aggressive brain tumor. GDC-0449, a drug that ramps down this signaling pathway by binding to the Hh pathway component Smoothened, was recently shown to induce rapid and dramatic tumor regression in a patient with metastatic medulloblastoma, but the tumor eventually developed resistance to the drug. Yauch et al. (p. 572, published online 3 September) show that resistance arose because the tumor acquired a mutation in Smoothened that disrupts binding of the drug. Identification of this resistance mechanism may facilitate the design of next-generation drugs for this type of cancer. A mutation that prevents binding of a promising drug lead to its target protein confers resistance in a human brain tumor. The Hedgehog (Hh) signaling pathway is inappropriately activated in certain human cancers, including medulloblastoma, an aggressive brain tumor. GDC-0449, a drug that inhibits Hh signaling by targeting the serpentine receptor Smoothened (SMO), has produced promising anti-tumor responses in early clinical studies of cancers driven by mutations in this pathway. To evaluate the mechanism of resistance in a medulloblastoma patient who had relapsed after an initial response to GDC-0449, we determined the mutational status of Hh signaling genes in the tumor after disease progression. We identified an amino acid substitution at a conserved aspartic acid residue of SMO that had no effect on Hh signaling but disrupted the ability of GDC-0449 to bind SMO and suppress this pathway. A mutation altering the same amino acid also arose in a GDC-0449–resistant mouse model of medulloblastoma. These findings show that acquired mutations in a serpentine receptor with features of a G protein–coupled receptor can serve as a mechanism of drug resistance in human cancer.

Collaboration


Dive into the Frederic J. de Sauvage's collaboration.

Researchain Logo
Decentralizing Knowledge