Frédéric Landmann
University of California, Santa Cruz
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Frédéric Landmann.
Annual Review of Genetics | 2008
Laura R. Serbus; Catharina Casper-Lindley; Frédéric Landmann; William Sullivan
Wolbachia are gram-negative bacteria that are widespread in nature, carried by the majority of insect species as well as some mites, crustaceans, and filarial nematodes. Wolbachia can range from parasitic to symbiotic, depending upon the interaction with the host species. The success of Wolbachia is attributed to efficient maternal transmission and manipulations of host reproduction that favor infected females, such as sperm-egg cytoplasmic incompatibility (CI). Much remains unknown about the mechanistic basis for Wolbachia-host interactions. Here we summarize the current understanding of Wolbachia interaction with insect hosts, with a focus on Drosophila. The areas of discussion include Wolbachia transmission in oogenesis, Wolbachia distribution in spermatogenesis, induction and rescue of the CI phenotype, Wolbachia genomics, and Wolbachia-membrane interactions.
Nature | 2011
Huimin Zhang; Frédéric Landmann; Hala Zahreddine; David Rodriguez; Marc Koch; Michel Labouesse
Mechanotransduction refers to the transformation of physical forces into chemical signals. It generally involves stretch-sensitive channels or conformational change of cytoskeleton-associated proteins. Mechanotransduction is crucial for the physiology of several organs and for cell migration. The extent to which mechanical inputs contribute to development, and how they do this, remains poorly defined. Here we show that a mechanotransduction pathway operates between the body-wall muscles of Caenorhabditis elegans and the epidermis. This pathway involves, in addition to a Rac GTPase, three signalling proteins found at the hemidesmosome: p21-activated kinase (PAK-1), the adaptor GIT-1 and its partner PIX-1. The phosphorylation of intermediate filaments is one output of this pathway. Tension exerted by adjacent muscles or externally exerted mechanical pressure maintains GIT-1 at hemidesmosomes and stimulates PAK-1 activity through PIX-1 and Rac. This pathway promotes the maturation of a hemidesmosome into a junction that can resist mechanical stress and contributes to coordinating the morphogenesis of epidermal and muscle tissues. Our findings suggest that the C. elegans hemidesmosome is not only an attachment structure, but also a mechanosensor that responds to tension by triggering signalling processes. We suggest that similar pathways could promote epithelial morphogenesis or wound healing in other organisms in which epithelial cells adhere to tension-generating contractile cells.
PLOS ONE | 2011
Emanuele Ferri; Odile Bain; Michela Barbuto; Coralie Martin; Nathan Lo; Shigehiko Uni; Frédéric Landmann; Sara G. Baccei; Ricardo Guerrero; Sueli de Souza Lima; Claudio Bandi; Samuel Wanji; Moustapha Diagne; Maurizio Casiraghi
Background Wolbachia are intriguing symbiotic endobacteria with a peculiar host range that includes arthropods and a single nematode family, the Onchocercidae encompassing agents of filariases. This raises the question of the origin of infection in filariae. Wolbachia infect the female germline and the hypodermis. Some evidences lead to the theory that Wolbachia act as mutualist and coevolved with filariae from one infection event: their removal sterilizes female filariae; all the specimens of a positive species are infected; Wolbachia are vertically inherited; a few species lost the symbiont. However, most data on Wolbachia and filaria relationships derive from studies on few species of Onchocercinae and Dirofilariinae, from mammals. Methodology/Principal Findings We investigated the Wolbachia distribution testing 35 filarial species, including 28 species and 7 genera and/or subgenera newly screened, using PCR, immunohistochemical staining, whole mount fluorescent analysis, and cocladogenesis analysis. (i) Among the newly screened Onchocercinae from mammals eight species harbour Wolbachia but for some of them, bacteria are absent in the hypodermis, or in variable density. (ii) Wolbachia are not detected in the pathological model Monanema martini and in 8, upon 9, species of Cercopithifilaria. (iii) Supergroup F Wolbachia is identified in two newly screened Mansonella species and in Cercopithifilaria japonica. (iv) Type F Wolbachia infect the intestinal cells and somatic female genital tract. (v) Among Oswaldofilariinae, Waltonellinae and Splendidofilariinae, from saurian, anuran and bird respectively, Wolbachia are not detected. Conclusions/Significance The absence of Wolbachia in 63% of onchocercids, notably in the ancestral Oswaldofilariinae estimated 140 mya old, the diverse tissues or specimens distribution, and a recent lateral transfer in supergroup F Wolbachia, modify the current view on the role and evolution of the endosymbiont and their hosts. Further genomic analyses on some of the newly sampled species are welcomed to decipher the open questions.
Development | 2009
Christelle Gally; Frédéric Wissler; Hala Zahreddine; Sophie Quintin; Frédéric Landmann; Michel Labouesse
Myosin II plays a central role in epithelial morphogenesis; however, its role has mainly been examined in processes involving a single cell type. Here we analyze the structure, spatial requirement and regulation of myosin II during C. elegans embryonic elongation, a process that involves distinct epidermal cells and muscles. We developed novel GFP probes to visualize the dynamics of actomyosin remodeling, and found that the assembly of myosin II filaments, but not actin microfilaments, depends on the myosin regulatory light chain (MLC-4) and essential light chain (MLC-5, which we identified herein). To determine how myosin II regulates embryonic elongation, we rescued mlc-4 mutants with various constructs and found that MLC-4 is essential in a subset of epidermal cells. We show that phosphorylation of two evolutionary conserved MLC-4 serine and threonine residues is important for myosin II activity and organization. Finally, in an RNAi screen for potential myosin regulatory light chain kinases, we found that the ROCK, PAK and MRCK homologs act redundantly. The combined loss of ROCK and PAK, or ROCK and MRCK, completely prevented embryonic elongation, but a constitutively active form of MLC-4 could only rescue a lack of MRCK. This result, together with systematic genetic epistasis tests with a myosin phosphatase mutation, suggests that ROCK and MRCK regulate MLC-4 and the myosin phosphatase. Moreover, we suggest that ROCK and PAK regulate at least one other target essential for elongation, in addition to MLC-4.
PLOS Pathogens | 2009
Frédéric Landmann; Guillermo A. Orsi; Benjamin Loppin; William Sullivan
Wolbachia is a bacteria endosymbiont that rapidly infects insect populations through a mechanism known as cytoplasmic incompatibility (CI). In CI, crosses between Wolbachia-infected males and uninfected females produce severe cell cycle defects in the male pronucleus resulting in early embryonic lethality. In contrast, viable progeny are produced when both parents are infected (the Rescue cross). An important consequence of CI–Rescue is that infected females have a selective advantage over uninfected females facilitating the rapid spread of Wolbachia through insect populations. CI disrupts a number of prophase and metaphase events in the male pronucleus, including Cdk1 activation, chromosome condensation, and segregation. Here, we demonstrate that CI disrupts earlier interphase cell cycle events. Specifically, CI delays the H3.3 and H4 deposition that occurs immediately after protamine removal from the male pronucleus. In addition, we find prolonged retention of the replication factor PCNA in the male pronucleus into metaphase, indicating progression into mitosis with incompletely replicated DNA. We propose that these CI-induced interphase defects in de novo nucleosome assembly and replication are the cause of the observed mitotic condensation and segregation defects. In addition, these interphase chromosome defects likely activate S-phase checkpoints, accounting for the previously described delays in Cdk1 activation. These results have important implications for the mechanism of Rescue and other Wolbachia-induced phenotypes.
PLOS Pathogens | 2011
Frédéric Landmann; Denis Voronin; William Sullivan; Mark J. Taylor
Filarial nematodes maintain a mutualistic relationship with the endosymbiont Wolbachia. Depletion of Wolbachia produces profound defects in nematode development, fertility and viability and thus has great promise as a novel approach for treating filarial diseases. However, little is known concerning the basis for this mutualistic relationship. Here we demonstrate using whole mount confocal microscopy that an immediate response to Wolbachia depletion is extensive apoptosis in the adult germline, and in the somatic cells of the embryos, microfilariae and fourth-stage larvae (L4). Surprisingly, apoptosis occurs in the majority of embryonic cells that had not been infected prior to antibiotic treatment. In addition, no apoptosis occurs in the hypodermal chords, which are populated with large numbers of Wolbachia, although disruption of the hypodermal cytoskeleton occurs following their depletion. Thus, the induction of apoptosis upon Wolbachia depletion is non-cell autonomous and suggests the involvement of factors originating from Wolbachia in the hypodermal chords. The pattern of apoptosis correlates closely with the nematode tissues and processes initially perturbed following depletion of Wolbachia, embryogenesis and long-term sterilization, which are sustained for several months until the premature death of the adult worms. Our observations provide a cellular mechanism to account for the sustained reductions in microfilarial loads and interruption of transmission that occurs prior to macrofilaricidal activity following antibiotic therapy of filarial nematodes.
PLOS Neglected Tropical Diseases | 2010
Frédéric Landmann; Jeremy M. Foster; Barton E. Slatko; William Sullivan
Wolbachia are required for filarial nematode survival and fertility and contribute to the immune responses associated with human filarial diseases. Here we developed whole-mount immunofluorescence techniques to characterize Wolbachia somatic and germline transmission patterns and tissue distribution in Brugia malayi, a nematode responsible for lymphatic filariasis. In the initial embryonic divisions, Wolbachia segregate asymmetrically such that they occupy only a small subset of cells in the developing embryo, facilitating their concentration in the adult hypodermal chords and female germline. Wolbachia are not found in male reproductive tissues and the absence of Wolbachia from embryonic germline precursors in half of the embryos indicates Wolbachia loss from the male germline may occur in early embryogenesis. Wolbachia rely on fusion of hypodermal cells to populate adult chords. Finally, we detect Wolbachia in the secretory canal lumen suggesting living worms may release bacteria and/or their products into their host.
Development | 2007
Marie Diogon; Frédéric Wissler; Sophie Quintin; Yasuko Nagamatsu; Satis Sookhareea; Frédéric Landmann; Harald Hutter; Nicolas Vitale; Michel Labouesse
Embryonic morphogenesis involves the coordinate behaviour of multiple cells and requires the accurate balance of forces acting within different cells through the application of appropriate brakes and throttles. In C. elegans, embryonic elongation is driven by Rho-binding kinase (ROCK) and actomyosin contraction in the epidermis. We identify an evolutionary conserved, actin microfilament-associated RhoGAP (RGA-2) that behaves as a negative regulator of LET-502/ROCK. The small GTPase RHO-1 is the preferred target of RGA-2 in vitro, and acts between RGA-2 and LET-502 in vivo. Two observations show that RGA-2 acts in dorsal and ventral epidermal cells to moderate actomyosin tension during the first half of elongation. First, time-lapse microscopy shows that loss of RGA-2 induces localised circumferentially oriented pulling on junctional complexes in dorsal and ventral epidermal cells. Second, specific expression of RGA-2 in dorsal/ventral, but not lateral, cells rescues the embryonic lethality of rga-2 mutants. We propose that actomyosin-generated tension must be moderated in two out of the three sets of epidermal cells surrounding the C. elegans embryo to achieve morphogenesis.
Biology Open | 2012
Frédéric Landmann; Odile Bain; Coralie Martin; Shigehiko Uni; Mark J. Taylor; William Sullivan
Summary Parasitic filarial nematodes that belong to the Onchocercidae family live in mutualism with Wolbachia endosymbionts. We developed whole-mount techniques to follow the segregation patterns of Wolbachia through the somatic and germline lineages of four filarial species. These studies reveal multiple evolutionarily conserved mechanisms that are required for Wolbachia localization to the germline. During the initial embryonic divisions, Wolbachia segregate asymmetrically such that they concentrate in the posteriorly localized P2 blastomere, a precursor to the adult germline and hypodermal lineages. Surprisingly, in the next division they are excluded from the germline precursor lineage. Rather, they preferentially segregate to the C blastomere, a source of posterior hypodermal cells. Localization to the germline is accomplished by a distinct mechanism in which Wolbachia invade first the somatic gonadal cells close to the ovarian distal tip cell, the nematode stem cell niche, from the hypodermis. This tropism is associated with a cortical F-actin disruption, suggesting an active engulfment. Significantly, germline invasion occurs only in females, explaining the lack of Wolbachia in the male germline. Once in the syncytial environment of the ovaries, Wolbachia rely on the rachis to multiply and disperse into the germ cells. The utilization of cell-to-cell invasion for germline colonization may indicate an ancestral mode of horizontal transfer that preceded the acquisition of the mutualism.
International Journal for Parasitology | 2012
Emilie Lefoulon; Laurent Gavotte; Kerstin Junker; Michela Barbuto; Shigehiko Uni; Frédéric Landmann; Sauli Laaksonen; Susanna Saari; Sven Nikander; Sueli de Souza Lima; Maurizio Casiraghi; Odile Bain; Coralie Martin
Wolbachia are vertically transmitted endosymbiotic bacteria of arthropods and onchocercid nematodes. It is commonly accepted that they co-evolved with their filarial hosts, and have secondarily been lost in some species. However, most of the data on the Wolbachia/Onchocercidae relationship have been derived from studies on two subfamilies, the Dirofilariinae and the Onchocercinae, which harbour parasites of humans and domestic animals. Within the last few years, analyses of more diverse material have suggested that some groups of Onchocercidae do not have Wolbachia, such as recently studied Splendidofilariinae from birds. This study takes advantage of the analysis of additional Splendidofilariinae, Rumenfilaria andersoni from a Finnish reindeer and Madathamugadia hiepei from a South African gecko, using PCR, immunohistochemical staining and whole-mount fluorescent analysis to detect Wolbachia and describe its strains. A DNA barcoding approach and phylogenetic analyses were used to investigate the symbiosis between Wolbachia and the Onchocercidae. A new supergroup F Wolbachia was demonstrated in M. hiepei, representing the first filarial nematode harbouring Wolbachia described in a non-mammalian host. In the adult, Wolbachia infects the female germline but not the hypodermis, and intestinal cells are also infected. The phylogenetic analyses confirmed a recent emergence of supergroup F. They also suggested several events of horizontal transmission between nematodes and arthropods in this supergroup, and the existence of different metabolic interactions between the filarial nematodes and their symbionts.