Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Frédéric Le Roux is active.

Publication


Featured researches published by Frédéric Le Roux.


Ergodic Theory and Dynamical Systems | 2012

There is no minimal action of 2 on the plane

Frédéric Le Roux

In this paper it is proved that there is no minimal action (i.e. every orbit is dense) of Z^2 on the plane. The proof uses the non-existence of minimal homeomorphisms on the infinite annulus (Le Calvez-Yoccozs theorem), and the theory of Brouwer homeomorphisms.


Geometry & Topology | 2011

Free planar actions of the Klein bottle group

Frédéric Le Roux

We describe the structure of the free actions of the Klein bottle group by orientation preserving homeomorphisms of the plane. This group is generated by two elements


Annales Scientifiques De L Ecole Normale Superieure | 2007

CONSTRUCTION OF CURIOUS MINIMAL UNIQUELY ERGODIC HOMEOMORPHISMS ON MANIFOLDS: THE DENJOY-REES TECHNIQUE

François Béguin; Sylvain Crovisier; Frédéric Le Roux

a,b


Bulletin de la Société Mathématique de France | 2003

Ensemble oscillant d'un homéomorphisme de Brouwer, homéomorphismes de Reeb

François Béguin; Frédéric Le Roux

, where the conjugate of


Ergodic Theory and Dynamical Systems | 1999

Bounded recurrent sets for planar homeomorphisms

Frédéric Le Roux

b


Fundamenta Mathematicae | 2008

A topological characterization of holomorphic parabolic germs in the plane

Frédéric Le Roux

by


Comptes Rendus De L Academie Des Sciences Serie I-mathematique | 1999

Classes de conjugaison des flots du plan topologiquement équivalents au flot de Reeb

Frédéric Le Roux

a


Journal of Symplectic Geometry | 2010

Simplicity of homeo(D2, ∂D2, Area) and fragmentation of symplectic diffeomorphisms

Frédéric Le Roux

equals the inverse of


Geometry & Topology | 2005

Structure des homeomorphismes de Brouwer

Frédéric Le Roux

b


Comptes Rendus De L Academie Des Sciences Serie I-mathematique | 2000

Migration des points errants d'un homéomorphisme de surface

Frédéric Le Roux

. The main result is that

Collaboration


Dive into the Frédéric Le Roux's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge