Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Frederic Leblond is active.

Publication


Featured researches published by Frederic Leblond.


Journal of Photochemistry and Photobiology B-biology | 2010

Pre-clinical whole-body fluorescence imaging: Review of instruments, methods and applications

Frederic Leblond; Scott C. Davis; Pablo A. Valdés; Brain W. Pogue

Fluorescence sampling of cellular function is widely used in all aspects of biology, allowing the visualization of cellular and sub-cellular biological processes with spatial resolutions in the range from nanometers up to centimeters. Imaging of fluorescence in vivo has become the most commonly used radiological tool in all pre-clinical work. In the last decade, full-body pre-clinical imaging systems have emerged with a wide range of utilities and niche application areas. The range of fluorescent probes that can be excited in the visible to near-infrared part of the electromagnetic spectrum continues to expand, with the most value for in vivo use being beyond the 630 nm wavelength, because the absorption of light sharply decreases. Whole-body in vivo fluorescence imaging has not yet reached a state of maturity that allows its routine use in the scope of large-scale pre-clinical studies. This is in part due to an incomplete understanding of what the actual fundamental capabilities and limitations of this imaging modality are. However, progress is continuously being made in research laboratories pushing the limits of the approach to consistently improve its performance in terms of spatial resolution, sensitivity and quantification. This paper reviews this imaging technology with a particular emphasis on its potential uses and limitations, the required instrumentation, and the possible imaging geometries and applications. A detailed account of the main commercially available systems is provided as well as some perspective relating to the future of the technology development. Although the vast majority of applications of in vivo small animal imaging are based on epi-illumination planar imaging, the future success of the method relies heavily on the design of novel imaging systems based on state-of-the-art optical technology used in conjunction with high spatial resolution structural modalities such as MRI, CT or ultrasound.


Journal of Neurosurgery | 2011

Quantitative fluorescence in intracranial tumor: implications for ALA-induced PpIX as an intraoperative biomarker.

Pablo A. Valdés; Frederic Leblond; Anthony Kim; Brent T. Harris; Brian C. Wilson; Xiaoyao Fan; Tor D. Tosteson; Alex Hartov; Songbai Ji; Kadir Erkmen; Nathan E. Simmons; Keith D. Paulsen; David W. Roberts

OBJECT Accurate discrimination between tumor and normal tissue is crucial for optimal tumor resection. Qualitative fluorescence of protoporphyrin IX (PpIX), synthesized endogenously following δ-aminolevulinic acid (ALA) administration, has been used for this purpose in high-grade glioma (HGG). The authors show that diagnostically significant but visually imperceptible concentrations of PpIX can be quantitatively measured in vivo and used to discriminate normal from neoplastic brain tissue across a range of tumor histologies. METHODS The authors studied 14 patients with diagnoses of low-grade glioma (LGG), HGG, meningioma, and metastasis under an institutional review board-approved protocol for fluorescence-guided resection. The primary aim of the study was to compare the diagnostic capabilities of a highly sensitive, spectrally resolved quantitative fluorescence approach to conventional fluorescence imaging for detection of neoplastic tissue in vivo. RESULTS A significant difference in the quantitative measurements of PpIX concentration occurred in all tumor groups compared with normal brain tissue. Receiver operating characteristic (ROC) curve analysis of PpIX concentration as a diagnostic variable for detection of neoplastic tissue yielded a classification efficiency of 87% (AUC = 0.95, specificity = 92%, sensitivity = 84%) compared with 66% (AUC = 0.73, specificity = 100%, sensitivity = 47%) for conventional fluorescence imaging (p < 0.0001). More than 81% (57 of 70) of the quantitative fluorescence measurements that were below the threshold of the surgeons visual perception were classified correctly in an analysis of all tumors. CONCLUSIONS These findings are clinically profound because they demonstrate that ALA-induced PpIX is a targeting biomarker for a variety of intracranial tumors beyond HGGs. This study is the first to measure quantitative ALA-induced PpIX concentrations in vivo, and the results have broad implications for guidance during resection of intracranial tumors.


Journal of Neurosurgery | 2011

Coregistered fluorescence-enhanced tumor resection of malignant glioma: relationships between δ-aminolevulinic acid–induced protoporphyrin IX fluorescence, magnetic resonance imaging enhancement, and neuropathological parameters: Clinical article

David W. Roberts; Pablo A. Valdés; Brent T. Harris; Kathryn Fontaine; Alexander Hartov; Xiaoyao Fan; Songbai Ji; S. Scott Lollis; Brian W. Pogue; Frederic Leblond; Tor D. Tosteson; Brian C. Wilson; Keith D. Paulsen

OBJECT The aim of this study was to investigate the relationships between intraoperative fluorescence, features on MR imaging, and neuropathological parameters in 11 cases of newly diagnosed glioblastoma multiforme (GBM) treated using protoporphyrin IX (PpIX) fluorescence-guided resection. METHODS In 11 patients with a newly diagnosed GBM, δ-aminolevulinic acid (ALA) was administered to enhance endogenous synthesis of the fluorophore PpIX. The patients then underwent fluorescence-guided resection, coregistered with conventional neuronavigational image guidance. Biopsy specimens were collected at different times during surgery and assigned a fluorescence level of 0-3 (0, no fluorescence; 1, low fluorescence; 2, moderate fluorescence; or 3, high fluorescence). Contrast enhancement on MR imaging was quantified using two image metrics: 1) Gd-enhanced signal intensity (GdE) on T1-weighted subtraction MR image volumes, and 2) normalized contrast ratios (nCRs) in T1-weighted, postGd-injection MR image volumes for each biopsy specimen, using the biopsy-specific image-space coordinate transformation provided by the navigation system. Subsequently, each GdE and nCR value was grouped into one of two fluorescence categories, defined by its corresponding biopsy specimen fluorescence assessment as negative fluorescence (fluorescence level 0) or positive fluorescence (fluorescence level 1, 2, or 3). A single neuropathologist analyzed the H & E-stained tissue slides of each biopsy specimen and measured three neuropathological parameters: 1) histopathological score (0-IV); 2) tumor burden score (0-III); and 3) necrotic burden score (0-III). RESULTS Mixed-model analyses with random effects for individuals show a highly statistically significant difference between fluorescing and nonfluorescing tissue in GdE (mean difference 8.33, p = 0.018) and nCRs (mean difference 5.15, p < 0.001). An analysis of association demonstrated a significant relationship between the levels of intraoperative fluorescence and histopathological score (χ(2) = 58.8, p < 0.001), between fluorescence levels and tumor burden (χ(2) = 42.7, p < 0.001), and between fluorescence levels and necrotic burden (χ(2) = 30.9, p < 0.001). The corresponding Spearman rank correlation coefficients were 0.51 (p < 0.001) for fluorescence and histopathological score, and 0.49 (p < 0.001) for fluorescence and tumor burden, suggesting a strongly positive relationship for each of these variables. CONCLUSIONS These results demonstrate a significant relationship between contrast enhancement on preoperative MR imaging and observable intraoperative PpIX fluorescence. The finding that preoperative MR image signatures are predictive of intraoperative PpIX fluorescence is of practical importance for identifying candidates for the procedure. Furthermore, this study provides evidence that a strong relationship exists between tumor aggressiveness and the degree of tissue fluorescence that is observable intraoperatively, and that observable fluorescence has an excellent positive predictive value but a low negative predictive value.


Science Translational Medicine | 2015

Intraoperative brain cancer detection with Raman spectroscopy in humans

Michael Jermyn; Kelvin Mok; Jeanne Mercier; Joannie Desroches; Julien Pichette; Karl Saint-Arnaud; Liane Bernstein; Marie-Christine Guiot; Kevin Petrecca; Frederic Leblond

A handheld Raman spectroscopy probe enabled detection of invasive brain cancer intraoperatively in patients with grade 2 to 4 gliomas. Probing for brain tumors Gliomas are invasive cancers, spreading quietly throughout the brain. They pose a formidable challenge to surgeons who try to remove all cancer cells during resection; leaving any cancer behind can lower the patient’s prospects for survival. Jermyn et al. adapted Raman spectroscopy for the operating room by developing an imaging technique that uses a commercially available, handheld contact fiber optic probe. The probe’s optic cables were connected to a near-infrared laser, for stimulating tissue molecules; in turn, these components were linked to a computer to visualize resulting spectra in real time. When held against human brain tissue, the probe measured the Raman scattering signal, which was separated from background signals and differentiated from “normal” tissues using certain algorithms. The authors tested the probe in 17 patients with grade 2 to 4 gliomas who were undergoing surgery and compared imaging results with 161 biopsy samples. Intraoperative Raman imaging allowed the authors to detect both invasive and dense cancer cells with an accuracy of 92%. By comparison, the surgeon, using standard surgical tools like the bright-field microscope and magnetic resonance imaging, identified cancer with 73% accuracy. Such label-free, portable, intraoperative imaging technologies will be important in improving the efficiency of tumor resections and, in turn, for extending survival times of glioma patients. Cancers are often impossible to visually distinguish from normal tissue. This is critical for brain cancer where residual invasive cancer cells frequently remain after surgery, leading to disease recurrence and a negative impact on overall survival. No preoperative or intraoperative technology exists to identify all cancer cells that have invaded normal brain. To address this problem, we developed a handheld contact Raman spectroscopy probe technique for live, local detection of cancer cells in the human brain. Using this probe intraoperatively, we were able to accurately differentiate normal brain from dense cancer and normal brain invaded by cancer cells, with a sensitivity of 93% and a specificity of 91%. This Raman-based probe enabled detection of the previously undetectable diffusely invasive brain cancer cells at cellular resolution in patients with grade 2 to 4 gliomas. This intraoperative technology may therefore be able to classify cell populations in real time, making it an ideal guide for surgical resection and decision-making.


Review of Scientific Instruments | 2009

A microcomputed tomography guided fluorescence tomography system for small animal molecular imaging.

Dax Kepshire; Niculae Mincu; Michael Hutchins; Josiah Gruber; Hamid Dehghani; Justin Hypnarowski; Frederic Leblond; Mario Khayat; Brian W. Pogue

A prototype small animal imaging system was created for coupling fluorescence tomography (FT) with x-ray microcomputed tomography (microCT). The FT system has the potential to provide synergistic information content resultant from using microCT images as prior spatial information and then allows overlay of the FT image onto the original microCT image. The FT system was designed to use single photon counting to provide maximal sensitivity measurements in a noncontact geometry. Five parallel detector locations are used, each allowing simultaneous sampling of the fluorescence and transmitted excitation signals through the tissue. The calibration and linearity range performance of the system are outlined in a series of basic performance tests and phantom studies. The ability to image protoporphyrin IX in mouse phantoms was assessed and the system is ready for in vivo use to study biological production of this endogenous marker of tumors. This multimodality imaging system will have a wide range of applications in preclinical cancer research ranging from studies of the tumor microenvironment and treatment efficacy for emerging cancer therapeutics.


Journal of High Energy Physics | 2003

SD-brane gravity fields and rolling tachyons

Frederic Leblond; Amanda W. Peet

S(pacelike)D-branes are objects arising naturally in string theory when Dirichlet boundary conditions are imposed on the time direction. SD-brane physics is inherently time-dependent. Previous investigations of gravity fields of SD-branes have yielded undesirable naked spacelike singularities. We set up the problem of coupling the most relevant open-string tachyonic mode to massless closed-string modes in the bulk, with backreaction and Ramond-Ramond fields included. We find solutions numerically in a self-consistent approximation; our solutions are naturally asymptotically flat and time-reversal asymmetric. We find completely nonsingular evolution; in particular, the dilaton and curvature are well-behaved for all time. The essential mechanism for spacetime singularity resolution is the inclusion of full backreaction between the bulk fields and the rolling tachyon. Our analysis is not the final word on the story, because we have to make some significant approximations, most notably homogeneity of the tachyon on the unstable branes. Nonetheless, we provide significant progress in plugging a gaping hole in prior understanding of the gravity fields of SD-branes.


Journal of Biomedical Optics | 2011

Combined fluorescence and reflectance spectroscopy for in vivo quantification of cancer biomarkers in low- and high-grade glioma surgery

Pablo A. Valdés; Anthony Kim; Frederic Leblond; Olga M. Conde; Brent T. Harris; Keith D. Paulsen; Brian C. Wilson; David W. Roberts

Biomarkers are indicators of biological processes and hold promise for the diagnosis and treatment of disease. Gliomas represent a heterogeneous group of brain tumors with marked intra- and inter-tumor variability. The extent of surgical resection is a significant factor influencing post-surgical recurrence and prognosis. Here, we used fluorescence and reflectance spectral signatures for in vivo quantification of multiple biomarkers during glioma surgery, with fluorescence contrast provided by exogenously-induced protoporphyrin IX (PpIX) following administration of 5-aminolevulinic acid. We performed light-transport modeling to quantify multiple biomarkers indicative of tumor biological processes, including the local concentration of PpIX and associated photoproducts, total hemoglobin concentration, oxygen saturation, and optical scattering parameters. We developed a diagnostic algorithm for intra-operative tissue delineation that accounts for the combined tumor-specific predictive capabilities of these quantitative biomarkers. Tumor tissue delineation achieved accuracies of up to 94% (specificity = 94%, sensitivity = 94%) across a range of glioma histologies beyond current state-of-the-art optical approaches, including state-of-the-art fluorescence image guidance. This multiple biomarker strategy opens the door to optical methods for surgical guidance that use quantification of well-established neoplastic processes. Future work would seek to validate the predictive power of this proof-of-concept study in a separate larger cohort of patients.


Scientific Reports | 2012

Quantitative, spectrally-resolved intraoperative fluorescence imaging.

Pablo A. Valdés; Frederic Leblond; Valerie L. Jacobs; Brian C. Wilson; Keith D. Paulsen; David W. Roberts

Intraoperative visual fluorescence imaging (vFI) has emerged as a promising aid to surgical guidance, but does not fully exploit the potential of the fluorescent agents that are currently available. Here, we introduce a quantitative fluorescence imaging (qFI) approach that converts spectrally-resolved data into images of absolute fluorophore concentration pixel-by-pixel across the surgical field of view (FOV). The resulting estimates are linear, accurate, and precise relative to true values, and spectral decomposition of multiple fluorophores is also achieved. Experiments with protoporphyrin IX in a glioma rodent model demonstrate in vivo quantitative and spectrally-resolved fluorescence imaging of infiltrating tumor margins for the first time. Moreover, we present images from human surgery which detect residual tumor not evident with state-of-the-art vFI. The wide-field qFI technique has broad implications for intraoperative surgical guidance because it provides near real-time quantitative assessment of multiple fluorescent biomarkers across the operative field.


Journal of The Optical Society of America A-optics Image Science and Vision | 2009

Early-photon fluorescence tomography: spatial resolution improvements and noise stability considerations

Frederic Leblond; Hamid Dehghani; Dax Kepshire; Brian W. Pogue

In vivo tissue imaging using near-infrared light suffers from low spatial resolution and poor contrast recovery because of highly scattered photon transport. For diffuse optical tomography (DOT) and fluorescence molecular tomography (FMT), the resolution is limited to about 5-10% of the diameter of the tissue being imaged, which puts it in the range of performance seen in nuclear medicine. This paper introduces the mathematical formalism explaining why the resolution of FMT can be significantly improved when using instruments acquiring fast time-domain optical signals. This is achieved through singular-value analysis of the time-gated inverse problem based on weakly diffused photons. Simulations relevant to mouse imaging are presented showing that, in stark contrast to steady-state imaging, early time-gated intensities (within 200 ps or 400 ps) can in principle be used to resolve small fluorescent targets (radii from 1.5 to 2.5 mm) separated by less than 1.5 mm.


Neurosurgical Focus | 2011

Quantitative and qualitative 5-aminolevulinic acid–induced protoporphyrin IX fluorescence in skull base meningiomas

Kimon Bekelis; Pablo A. Valdés; Kadir Erkmen; Frederic Leblond; Anthony Kim; Brian C. Wilson; Brent T. Harris; Keith D. Paulsen; David W. Roberts

OBJECT Complete resection of skull base meningiomas provides patients with the best chance for a cure; however, surgery is frequently difficult given the proximity of lesions to vital structures, such as cranial nerves, major vessels, and venous sinuses. Accurate discrimination between tumor and normal tissue is crucial for optimal tumor resection. Qualitative assessment of protoporphyrin IX (PpIX) fluorescence following the exogenous administration of 5-aminolevulinic acid (ALA) has demonstrated utility in malignant glioma resection but limited use in meningiomas. Here the authors demonstrate the use of ALA-induced PpIX fluorescence guidance in resecting a skull base meningioma and elaborate on the advantages and disadvantages provided by both quantitative and qualitative fluorescence methodologies in skull base meningioma resection. METHODS A 52-year-old patient with a sphenoid wing WHO Grade I meningioma underwent tumor resection as part of an institutional review board-approved prospective study of fluorescence-guided resection. A surgical microscope modified for fluorescence imaging was used for the qualitative assessment of visible fluorescence, and an intraoperative probe for in situ fluorescence detection was utilized for quantitative measurements of PpIX. The authors assessed the detection capabilities of both the qualitative and quantitative fluorescence approaches. RESULTS The patient harboring a sphenoid wing meningioma with intraorbital extension underwent radical resection of the tumor with both visibly and nonvisibly fluorescent regions. The patient underwent a complete resection without any complications. Some areas of the tumor demonstrated visible fluorescence. The quantitative probe detected neoplastic tissue better than the qualitative modified surgical microscope. The intraoperative probe was particularly useful in areas that did not reveal visible fluorescence, and tissue from these areas was confirmed as tumor following histopathological analysis. CONCLUSIONS Fluorescence-guided resection may be a useful adjunct in the resection of skull base meningiomas. The use of a quantitative intraoperative probe to detect PpIX concentration allows more accurate determination of neoplastic tissue in meningiomas than visible fluorescence and is readily applicable in areas, such as the skull base, where complete resection is critical but difficult because of the vital structures surrounding the pathology.

Collaboration


Dive into the Frederic Leblond's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brian C. Wilson

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Jermyn

Montreal Neurological Institute and Hospital

View shared research outputs
Top Co-Authors

Avatar

Kevin Petrecca

Montreal Neurological Institute and Hospital

View shared research outputs
Top Co-Authors

Avatar

Joannie Desroches

École Polytechnique de Montréal

View shared research outputs
Top Co-Authors

Avatar

Hamid Dehghani

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge