Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Frédéric M. Rosa is active.

Publication


Featured researches published by Frédéric M. Rosa.


Genome Biology | 2007

MicroRNAs show a wide diversity of expression profiles in the developing and mature central nervous system

Marika Kapsimali; Wigard P. Kloosterman; Ewart de Bruijn; Frédéric M. Rosa; Ronald H.A. Plasterk; Stephen W. Wilson

BackgroundMicroRNA (miRNA) encoding genes are abundant in vertebrate genomes but very few have been studied in any detail. Bioinformatic tools allow prediction of miRNA targets and this information coupled with knowledge of miRNA expression profiles facilitates formulation of hypotheses of miRNA function. Although the central nervous system (CNS) is a prominent site of miRNA expression, virtually nothing is known about the spatial and temporal expression profiles of miRNAs in the brain. To provide an overview of the breadth of miRNA expression in the CNS, we performed a comprehensive analysis of the neuroanatomical expression profiles of 38 abundant conserved miRNAs in developing and adult zebrafish brain.ResultsOur results show miRNAs have a wide variety of different expression profiles in neural cells, including: expression in neuronal precursors and stem cells (for example, miR-92b); expression associated with transition from proliferation to differentiation (for example, miR-124); constitutive expression in mature neurons (miR-124 again); expression in both proliferative cells and their differentiated progeny (for example, miR-9); regionally restricted expression (for example, miR-222 in telencephalon); and cell-type specific expression (for example, miR-218a in motor neurons).ConclusionThe data we present facilitate prediction of likely modes of miRNA function in the CNS and many miRNA expression profiles are consistent with the mutual exclusion mode of function in which there is spatial or temporal exclusion of miRNAs and their targets. However, some miRNAs, such as those with cell-type specific expression, are more likely to be co-expressed with their targets. Our data provide an important resource for future functional studies of miRNAs in the CNS.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Molecular basis of cell migration in the fish lateral line: Role of the chemokine receptor CXCR4 and of its ligand, SDF1

Nicolas B. David; Dora Sapède; Laure Saint-Etienne; Christine Thisse; Bernard Thisse; Christine Dambly-Chaudière; Frédéric M. Rosa; Alain Ghysen

Cell migration plays an essential role in many morphogenetic processes, and its deregulation has many dramatic consequences. Yet how migration is controlled during normal development is still a largely unresolved question. We examined this process in the case of the posterior lateral line (PLL), a mechanosensory system present in fish and amphibians. In zebrafish, the embryonic PLL comprises seven to eight sense organs (neuromasts) aligned from head to tail along the flank of the animal and is formed by a primordium that originates from a cephalic placode. This primordium migrates along a stereotyped pathway toward the tip of the tail and deposits in its wake discrete groups of cells, each of which will become a neuromast. We show that a trail of SDF1-like chemokine is present along the pathway of the primordium and that a CXCR4-like chemokine receptor is expressed by the migrating cells. The inactivation of either the ligand or its receptor blocks migration, whereas in mutants in which the normal SDF1 trail is absent, the primordium path is redirected to the next, more ventral sdf1 expression domain. In all cases, the sensory axons remain associated to the primordium, indicating that the extension of the neurites to form the PLL nerve depends on the movement of the primordium. We conclude that both the formation and the innervation of this system depend on the SDF1-CXCR4 system, which has also been implicated in several migration events in humans, including metastasis formation and lymphocyte homing.


PLOS Biology | 2007

Characterization of sleep in zebrafish and insomnia in hypocretin receptor mutants

Tohei Yokogawa; Wilfredo Marin; Juliette Faraco; Guillaume Pezeron; Lior Appelbaum; Jian-Jian Zhang; Frédéric M. Rosa; Philippe Mourrain; Emmanuel Mignot

Sleep is a fundamental biological process conserved across the animal kingdom. The study of how sleep regulatory networks are conserved is needed to better understand sleep across evolution. We present a detailed description of a sleep state in adult zebrafish characterized by reversible periods of immobility, increased arousal threshold, and place preference. Rest deprivation using gentle electrical stimulation is followed by a sleep rebound, indicating homeostatic regulation. In contrast to mammals and similarly to birds, light suppresses sleep in zebrafish, with no evidence for a sleep rebound. We also identify a null mutation in the sole receptor for the wake-promoting neuropeptide hypocretin (orexin) in zebrafish. Fish lacking this receptor demonstrate short and fragmented sleep in the dark, in striking contrast to the excessive sleepiness and cataplexy of narcolepsy in mammals. Consistent with this observation, we find that the hypocretin receptor does not colocalize with known major wake-promoting monoaminergic and cholinergic cell groups in the zebrafish. Instead, it colocalizes with large populations of GABAergic neurons, including a subpopulation of Adra2a-positive GABAergic cells in the anterior hypothalamic area, neurons that could assume a sleep modulatory role. Our study validates the use of zebrafish for the study of sleep and indicates molecular diversity in sleep regulatory networks across vertebrates.


Pharmacogenetics and Genomics | 2007

Genomic and functional conservation of sedative-hypnotic targets in the zebrafish.

Corinne Renier; Juliette Faraco; Patrice Bourgin; Timothy Motley; Pascal Bonaventure; Frédéric M. Rosa; Emmanuel Mignot

Objectives The zebrafish is an ideally suited vertebrate animal model for large-scale genetic screens and is emerging as a model organism in pharmacological and behavioral research. We investigated the effects of sedative hypnotics commonly used in humans on zebrafish locomotor activity and identified the corresponding genomic and receptor binding targets. Methods We studied radioreceptor binding and behavioral responses to compounds with known sedative hypnotic properties representing multiple pharmacological classes. These included GABAergic hypnotics such as benzodiazepines, barbiturates, and baclofen; &agr;-2 adrenergic agonists; and histaminergic H1 antagonists. An automated system was used to quantify behavioral effects. Zebrafish homologs of histamine receptor H1, &ggr;-amino-n-butyric acid type A (&agr;-subunit), and &ggr;-amino-n-butyric acid type B (1 and 2) receptor genes were identified through translating queries of the zebrafish Zv4 database with human receptor protein sequences. A pilot screen of 154 N-ethyl-N-nitroso-urea-mutagenized F2 families was conducted with pentobarbital, flurazepam and mepyramine. Results Radioreceptor binding studies revealed high affinity binding sites for known &ggr;-amino-n-butyric acid type A, &ggr;-amino-n-butyric acid type B, and histaminergic ligands. Drug immersion of 5–7-day-old larvae reduced mobility and, in some cases, produced a complete state of unresponsive immobility similar to anesthesia. These effects were dose-dependent and rapidly reversible in water. As established in mammals, (R)-baclofen was more active behaviorally and had higher affinity in binding studies when compared with (S)-baclofen. In this model, (S)-baclofen only partially reduced activity at high dose and blocked (R)-baclofen behavioral hypnotic effects. Genomic sequences with high similarity to the corresponding pharmacological targets were identified, but no mutants were found in the pilot screen. Conclusions These results demonstrate conservation of gene, protein and function for many established sedative hypnotic pathways. The results indicate feasibility of conducting large-scale pharmacogenomic screens to isolate novel proteins modulating susceptibility to hypnotic compounds in a vertebrate system.


Current Biology | 1998

Conversion of zebrafish blastomeres to an endodermal fate by TGF-β-related signalling

Nadine Peyriéras; Uwe Strähle; Frédéric M. Rosa

The endoderm contributes cells to the gut, and participates in the induction and patterning of the vertebrate head and heart. The mechanisms controlling the formation of endoderm are poorly understood. Commitment of endoderm cells occurs at the onset of gastrulation and requires cell interactions; studies in vitro have implicated transforming growth factor Beta (TGF-beta)-related molecules in this process. TARAM-A is a zebrafish receptor kinase that is related to the type I subunit of the TGF-beta receptor, and is expressed in presumptive endomesodermal cells at gastrulation. We provide here evidence for its involvement in endoderm formation in vivo. Activation of TARAM-A was found to drive blastomeres towards an endodermal fate. The induced endoderm behaved ad endogenous endoderm during gastrulation: it migrated in contact with the yolk and expressed endoderm-specific markers. Loss-of-function mutations in the zebrafish one-eyed-pinhead (OEP) gene lead to defects in heart formation, defects of the ventral central nervous system (CNS) and cyclopia. Mutant embryos also lack endoderm and anterior mesoderm. Endoderm formation in oep mutant embryos was found to be restored by the activation of the TARAM-A signaling pathway. Cardiac and ocular defects, but not midline CNS structures, were rescued non-autonomously, demonstrating that endoderm may provide signals that can pattern the eye anlage, and which are distinct form those specifying the ventral midline of the CNS.


Mechanisms of Development | 1995

Zebrafish Radar: A new member of the TGF-β superfamily defines dorsal regions of the neural plate and the embryonic retina

Monique Rissi; Jochen Wittbrodt; Emmanuèle Délot; Martin Naegeli; Frédéric M. Rosa

Proper development of metazoan embryos requires cell to cell communications. In many instances, these communications involve diffusible molecules, particularly members of the Transforming Growth Factor beta superfamily. In an effort to identify new members of this superfamily involved in the control of early zebrafish embryogenesis, we have isolated a gene, Radar, which appears to be conserved throughout vertebrate evolution and defines a new subfamily within the superfamily. Its pattern of expression suggests that Radar plays a role in the dorso-ventral polarity of the neural plate, blood islands formation, blood cells differentiation, the establishment of retinal dorso-ventral polarity and/or proper axonal retinotectal projections. Radar expression in ntl homozygous mutants indicates that notochord and hypochord development are intimately linked.


Development | 2004

Nodal and Fgf pathways interact through a positive regulatory loop and synergize to maintain mesodermal cell populations

Juliette Mathieu; Kevin J. P. Griffin; Philippe Herbomel; Thomas Dickmeis; Uwe Strähle; David Kimelman; Frédéric M. Rosa; Nadine Peyriéras

Interactions between Nodal/Activin and Fibroblast growth factor (Fgf) signalling pathways have long been thought to play an important role in mesoderm formation. However, the molecular and cellular processes underlying these interactions have remained elusive. Here, we address the epistatic relationships between Nodal and Fgf pathways during early embryogenesis in zebrafish. First, we find that Fgf signalling is required downstream of Nodal signals for inducing the Nodal co-factor One-eyed-pinhead (Oep). Thus, Fgf is likely to be involved in the amplification and propagation of Nodal signalling during early embryonic stages. This could account for the previously described ability of Fgf to render cells competent to respond to Nodal/Activin signals. In addition, overexpression data shows that Fgf8 and Fgf3 can take part in this process. Second, combining zygotic mutations in ace/fgf8 and oep disrupts mesoderm formation, a phenotype that is not produced by either mutation alone and is consistent with our model of an interdependence of Fgf8 and Nodal pathways through the genetic regulation of the Nodal co-factor Oep and the cell propagation of Nodal signalling. Moreover, mesodermal cell populations are affected differentially by double loss-of-function of Zoep;ace. Most of the dorsal mesoderm undergoes massive cell death by the end of gastrulation, in contrast to either single-mutant phenotype. However, some mesoderm cells are still able to undergo myogenic differentiation in the anterior trunk of Zoep;ace embryos, revealing a morphological transition at the level of somites 6-8. Further decreasing Oep levels by removing maternal oep products aggravates the mesodermal defects in double mutants by disrupting the fate of the entire mesoderm. Together, these results demonstrate synergy between oep and fgf8 that operates with regional differences and is involved in the induction, maintenance, movement and survival of mesodermal cell populations.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Maternal induction of ventral fate by zebrafish radar

Samuel Sidi; Carole Goutel; Nadine Peyriéras; Frédéric M. Rosa

In vertebrate embryos, maternal determinants are thought to preestablish the dorsoventral axis by locally activating zygotic ventral- and dorsal-specifying genes, e.g., genes encoding bone morphogenetic proteins (BMPs) and BMP inhibitors, respectively. Whereas the canonical Wnt/β-catenin pathway fulfills this role dorsally, the existence of a reciprocal maternal ventralizing signal remains hypothetical. Maternal noncanonical Wnt/Ca2+ signaling may promote ventral fates by suppressing Wnt/β-catenin dorsalizing signals; however, whether any maternal determinant is directly required for the activation of zygotic ventral-specifying genes is unknown. Here, we show that such a function is achieved, in part, in the zebrafish embryo by the maternally encoded transforming growth factor β (TGF-β) signaling molecule, Radar. Loss-of-function experiments, together with epistasis analyses, identify maternal Radar as an upstream activator of bmps expression. Maternal induction of bmps by Radar is essential for zebrafish development as its removal results in larval-lethal dorsalized phenotypes. Double-morphant analyses further suggest that Radar functions through the TGF-β receptor Alk8 to initiate the expression of bmp genes. Our results support the existence of a previously uncharacterized maternal ventralizing pathway. They might further indicate that maternal TGF-β/Rdr and Wnt/Ca2+ pathways complementarily specify ventral cell fates, with the former triggering bmps expression and the latter indirectly repressing genes encoding BMP antagonists.


Development | 2004

The zebrafish Iroquois gene iro7 positions the r4/r5 boundary and controls neurogenesis in the rostral hindbrain.

Virginie Lecaudey; Isabelle Anselme; Frédéric M. Rosa; Sylvie Schneider-Maunoury

Early brain regionalisation involves the activation of genes coding for transcription factors in distinct domains of the neural plate. The limits of these domains often prefigure morphological boundaries. In the hindbrain, anteroposterior patterning depends on a segmentation process that leads to the formation of seven bulges called rhombomeres (r). The molecular cues involved in the early subdivision of the hindbrain and in rhombomere formation are not well understood. We show that iro7, a zebrafish gene coding for a transcription factor of the Iroquois family, is expressed at the end of gastrulation in the future midbrain and hindbrain territories up to the prospective r4/r5 boundary. This territory is strictly complementary to the expression domain of another homeobox gene, vhnf1, in the caudal neural plate. We demonstrate that Iro7 represses vhnf1 expression anterior to their common border and that, conversely, vHnf1 represses iro7 expression caudal to it. This suggests that the r4/r5 boundary is positioned by mutual repression between these two transcription factors. In addition, iro7 is involved in the specification of primary neurons in the rostral hindbrain. In particular, it is essential for the formation of the Mauthner neurons in r4. We propose that iro7 has a dual function in the hindbrain of the zebrafish embryo: it is required for the proper positioning of the prospective r4/r5 boundary and it promotes neurogenesis in the anterior hindbrain.


Molecular and Cellular Neuroscience | 2006

Mechano-sensory organ regeneration in adults: the zebrafish lateral line as a model.

Pascale Dufourcq; Myriam Roussigné; Patrick Blader; Frédéric M. Rosa; Nadine Peyrieras; Sophie Vriz

In this report, we present a study of regeneration of the lateral line, a collection of mechano-sensory organ, in the adult zebrafish caudal fin. As all neuromasts are innervated by axon fibers, neuronal regeneration is a key issue in the regenerating process. We first show that support cells from the last neuromast adjacent to the amputation plane divide and migrate to colonize the blastema in order to reform the missing part of the lateral line. We then show that nerve re-growth takes place later than neuromast progenitor cell migration. We also provide evidence that new growth cones form at the amputation plane and subsequently follow the migrating placode-like structure to re-innervate regenerated neuromasts as they differentiate. Altogether, our observations indicate that caudal lateral line regeneration is not a mere recapitulation of the ontogenic process.

Collaboration


Dive into the Frédéric M. Rosa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Uwe Strähle

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Nicolas B. David

École Normale Supérieure

View shared research outputs
Top Co-Authors

Avatar

Thomas Dickmeis

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Carole Goutel

École Normale Supérieure

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guillaume Lambert

École Normale Supérieure

View shared research outputs
Top Co-Authors

Avatar

Guillaume Pezeron

École Normale Supérieure

View shared research outputs
Top Co-Authors

Avatar

Juliette Mathieu

École Normale Supérieure

View shared research outputs
Top Co-Authors

Avatar

Nadine Peyriéras

École Normale Supérieure

View shared research outputs
Researchain Logo
Decentralizing Knowledge