Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Frédéric Touzet is active.

Publication


Featured researches published by Frédéric Touzet.


Inventiones Mathematicae | 2018

Singular foliations with trivial canonical class

Frank Loray; Jorge Vitório Pereira; Frédéric Touzet

This paper describes the structure of singular codimension one foliations with numerically trivial canonical bundle on complex projective manifolds.


Commentarii Mathematici Helvetici | 2006

Algebraic Reduction Theorem for complex codimension one singular foliations

Dominique Cerveau; Alcides Lins-Neto; Frank Loray; Jorge Vitório Pereira; Frédéric Touzet

Let


arXiv: Algebraic Geometry | 2016

On the Structure of Codimension 1 Foliations with Pseudoeffective Conormal Bundle

Frédéric Touzet

M


Mathematische Nachrichten | 2013

Foliations with trivial canonical bundle on Fano 3-folds

Frank Loray; Jorge Vitório Pereira; Frédéric Touzet

be a compact complex manifold equipped with


Bulletin de la Société Mathématique de France | 2006

Kähler manifolds with split tangent bundle

Marco Brunella; Jorge Vitório Pereira; Frédéric Touzet

n=\dim(M)


Annales Scientifiques De L Ecole Normale Superieure | 2008

Feuilletages holomorphes de codimension un dont la classe canonique est triviale

Frédéric Touzet

meromorphic vector fields that are linearly independent at a generic point. The main theorem is the following. If


arXiv: Algebraic Geometry | 2014

Representations of quasiprojective groups, Flat connections and Transversely projective foliations

Frank Loray; Frédéric Touzet; Jorge Vitório Pereira

M


arXiv: Classical Analysis and ODEs | 2015

Compact leaves of codimension one holomorphic foliations on projective manifolds

Benoît Claudon; Frank Loray; Jorge Vitório Pereira; Frédéric Touzet

is not bimeromorphic to an algebraic manifold, then any codimension one complex foliation


arXiv: Algebraic Geometry | 2013

Foliations with vanishing Chern classes

Jorge Vitório Pereira; Frédéric Touzet

\mathcal F


arXiv: Differential Geometry | 2009

Structure des feuilletages k\"ahleriens en courbure semi-n\'egative

Frédéric Touzet

with a codimension

Collaboration


Dive into the Frédéric Touzet's collaboration.

Top Co-Authors

Avatar

Jorge Vitório Pereira

Instituto Nacional de Matemática Pura e Aplicada

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alcides Lins-Neto

Instituto Nacional de Matemática Pura e Aplicada

View shared research outputs
Researchain Logo
Decentralizing Knowledge