Frederic V. Hartemann
Lawrence Livermore National Laboratory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Frederic V. Hartemann.
Journal of Applied Physics | 2006
Jason Pruet; Dennis Paul McNabb; C. Hagmann; Frederic V. Hartemann; C. P. J. Barty
We study the performance of a class of interrogation systems that exploit nuclear resonance fluorescence (NRF) to detect specific isotopes. In these systems the presence of a particular nuclide is inferred by observing the preferential attenuation of photons that strongly excite an electromagnetic transition in that nuclide. Estimates for the false positive/negative error rates, radiological dose, and detection sensitivity associated with discovering clandestine material embedded in cargo are presented. The relation between performance of the detection system and properties of the beam of interrogating photons is also considered. Bright gamma-ray sources with fine energy and angular resolution, such as those based on Thomson upscattering of laser light, are found to be associated with uniquely low radiological dose, scan times, and error rates. For this reason a consideration of NRF-based interrogation systems may provide impetus for efforts in light source development for applications related to national security and industry.
Applied Physics Letters | 2006
Thomas LaGrange; Michael R. Armstrong; K. Boyden; C. G. Brown; Jeffrey D. Colvin; William J. DeHope; Alan M. Frank; D. J. Gibson; Frederic V. Hartemann; Judy S. Kim; Wayne E. King; Bj Pyke; Bryan W. Reed; Michael D. Shirk; Richard M. Shuttlesworth; Brent C. Stuart; Ben Torralva; Nigel D. Browning
A dynamic transmission electron microscope (DTEM) has been designed and implemented to study structural dynamics in condensed matter systems. The DTEM is a conventional in situ transmission electron microscope (TEM) modified to drive material processes with a nanosecond laser, “pump” pulse and measure it shortly afterward with a 30-ns-long probe pulse of ∼107 electrons. An image with a resolution of <20nm may be obtained with a single pulse, largely eliminating the need to average multiple measurements and enabling the study of unique, irreversible events with nanosecond- and nanometer-scale resolution. Space charge effects, while unavoidable at such a high current, may be kept to reasonable levels by appropriate choices of operating parameters. Applications include the study of phase transformations and defect dynamics at length and time scales difficult to access with any other technique. This single-shot approach is complementary to stroboscopic TEM, which is capable of much higher temporal resolution ...
Physics of Plasmas | 1999
Frederic V. Hartemann; E. C. Landahl; A. L. Troha; J. R. Van Meter; H. A. Baldis; R. R. Freeman; N.C. Luhmann; Lin-Ping Song; Arthur K. Kerman; David U. L. Yu
The inverse free-electron laser (IFEL) interaction is studied theoretically and computationally in the case where the drive laser intensity approaches the relativistic regime, and the pulse duration is only a few optical cycles long. The IFEL concept has been demonstrated as a viable vacuum laser acceleration process; it is shown here that by using an ultrashort, ultrahigh-intensity drive laser pulse, the IFEL interaction bandwidth and accelerating gradient are increased considerably, thus yielding large energy gains. Using a chirped pulse and negative dispersion focusing optics allows one to take further advantage of the laser optical bandwidth and produce a chromatic line focus maximizing the gradient. The combination of these novel ideas results in a compact vacuum laser accelerator capable of accelerating picosecond electron bunches with a high gradient (GeV/m) and very low energy spread.
Optics Letters | 2010
Felicie Albert; S. G. Anderson; Gerald Anderson; S. M. Betts; D. J. Gibson; C. Hagmann; J. Hall; Micah Johnson; Mike Messerly; V. A. Semenov; Miroslav Y. Shverdin; A. Tremaine; Frederic V. Hartemann; C. W. Siders; Dennis Paul McNabb; C. P. J. Barty
What we believe to be the first demonstration of isotope-specific detection of a low-Z and low density object shielded by a high-Z and high-density material using monoenergetic gamma rays is reported. The isotope-specific detection of LiH shielded by Pb and Al is accomplished using the nuclear resonance fluorescence line of L7i at 478 keV. Resonant photons are produced via laser-based Compton scattering. The detection techniques are general, and the confidence level obtained is shown to be superior to that yielded by conventional x-ray and gamma-ray techniques in these situations.
Physics of Plasmas | 1998
Frederic V. Hartemann
Recent advances in novel technologies such as chirped pulse amplification and high gradient rf photoinjectors make it possible to study experimentally the interaction of relativistic electrons with ultrahigh intensity photon fields. Femtosecond laser systems operating in the TW–PW range are now available, as well as synchronized relativistic electron bunches with subpicosecond durations and THz bandwidths. Ponderomotive scattering can accelerate these electrons with extremely high gradients in a three-dimensional vacuum laser focus. The nonlinear Doppler shift induced by relativistic radiation pressure in Compton backscattering is shown to yield complex nonlinear spectra which can be modified by using temporal laser pulse shaping techniques. Colliding lasers pulses, where ponderomotive acceleration and Compton backscattering are combined, could also yield extremely short wavelength photons. Finally, strong radiative corrections are expected when the Doppler-upshifted laser wavelength approaches the Compto...
Laser and Particle Beams | 2004
Frederic V. Hartemann; A. Tremaine; S. G. Anderson; C. P. J. Barty; S. M. Betts; Rex Booth; Winthrop J. Brown; John K. Crane; Robert R. Cross; D. J. Gibson; D. N. Fittinghoff; Jaroslav Kuba; G.P. Le Sage; Dennis R. Slaughter; Alan Wootton; Edward P. Hartouni; P. T. Springer; J. B. Rosenzweig; A.K. Kerman
The Compton scattering of a terawatt-class, femtosecond laser pulse by a high-brightness, relativistic electron beam has been demonstrated as a viable approach toward compact, tunable sources of bright, femtosecond, hard X-ray flashes. The main focus of this article is a detailed description of such a novel X-ray source, namely the PLEIADES (Picosecond Laser–Electron Inter-Action for the Dynamical Evaluation of Structures) facility at Lawrence Livermore National Laboratory. PLEIADES has produced first light at 70 keV, thus enabling critical applications, such as advanced backlighting for the National Ignition Facility and in situ time-resolved studies of high- Z materials. To date, the electron beam has been focused down to σ x = σ y = 27 μm rms, at 57 MeV, with 266 pC of charge, a relative energy spread of 0.2%, a normalized horizontal emittance of 3.5 mm·mrad, a normalized vertical emittance of 11 mm·mrad, and a duration of 3 ps rms. The compressed laser pulse energy at focus is 480 mJ, the pulse duration 54 fs Intensity Full Width at Half-Maximum (IFWHM), and the 1/ e 2 radius 36 μm. Initial X rays produced by head-on collisions between the laser and electron beams at a repetition rate of 10 Hz were captured with a cooled CCD using a CsI scintillator; the peak photon energy was approximately 78 keV, and the observed angular distribution was found to agree very well with three-dimensional codes. The current X-ray dose is 3 × 10 6 photons per pulse, and the inferred peak brightness exceeds 10 15 photons/(mm 2 × mrad 2 × s × 0.1% bandwidth). Spectral measurements using calibrated foils of variable thickness are consistent with theory. Measurements of the X-ray dose as a function of the delay between the laser and electron beams show a 24-ps full width at half maximum (FWHM) window, as predicted by theory, in contrast with a measured timing jitter of 1.2 ps, which contributes to the stability of the source. In addition, K -edge radiographs of a Ta foil obtained at different electron beam energies clearly demonstrate the γ 2 -tunability of the source and show very good agreement with the theoretical divergence-angle dependence of the X-ray spectrum. Finally, electron bunch shortening experiments using velocity compression have also been performed and durations as short as 300 fs rms have been observed using coherent transition radiation; the corresponding inferred peak X-ray flux approaches 10 19 photons/s.
Optics Letters | 2010
Miroslav Y. Shverdin; Felicie Albert; S. G. Anderson; S. M. Betts; D. J. Gibson; Mike Messerly; Frederic V. Hartemann; C. W. Siders; C. P. J. Barty
We demonstrate a compact hyperdispersion stretcher and compressor pair that permit chirped-pulse amplification in Nd:YAG. We generate 750 mJ, 0.2 nm FWHM, 10 Hz pulses recompressed to an 8 ps near-transform-limited duration. The dispersion-matched pulse compressor and stretcher impart a chirp of 7300 ps/nm, in a 3 m x 1 m footprint.
Physics of Plasmas | 2012
Felicie Albert; Frederic V. Hartemann; S. G. Anderson; Robert R. Cross; D. J. Gibson; J. Hall; R. A. Marsh; M. Messerly; S. S. Wu; C. W. Siders; C. P. J. Barty
Tunable, high precision gamma-ray sources are under development to enable nuclear photonics, an emerging field of research. This paper focuses on the technological and theoretical challenges related to precision Compton scattering gamma-ray sources. In this scheme, incident laser photons are scattered and Doppler upshifted by a high brightness electron beam to generate tunable and highly collimated gamma-ray pulses. The electron and laser beam parameters can be optimized to achieve the spectral brightness and narrow bandwidth required by nuclear photonics applications. A description of the design of the next generation precision gamma-ray source currently under construction at Lawrence Livermore National Laboratory is presented, along with the underlying motivations. Within this context, high-gradient X-band technology, used in conjunction with fiber-based photocathode drive laser and diode pumped solid-state interaction laser technologies, will be shown to offer optimal performance for high gamma-ray spe...
Physics of Plasmas | 1998
G.P. Le Sage; C. V. Bennett; W. E. White; Eric C. Landahl; Lisa Leanne Laurent; N.C. Luhmann; Frederic V. Hartemann; C. Ho; W.K. Lau; Teddy Yang
Linear colliders, future electron acceleration concepts, and short pulse, ultrawideband millimeter-wave sources all require bright electron beams. Photoinjectors have demonstrated the ability to produce relativistic electron beams with low emittance and energy spread. The system described herein combines state-of-the-art capabilities in the laser and rf systems, advanced photocathode materials, and new concepts for synchronization. Phase jitter has been measured in detail, and schemes for alleviating this problem have undergone initial proof-of-principle testing. Direct mode locking of a multiple quantum well Al:GaAs solid-state laser oscillator by an rf signal sampled from within a high-power rf accelerator cavity was demonstrated for the first time. Characterization of the electron beam produced by the system is presented. The linear electron accelerator system is comprised of a 1.5 cell side-wall coupled standing wave accelerator structure, driven by a 20 MW Stanford Linear Accelerator Center (SLAC) Kl...
IEEE Transactions on Plasma Science | 1998
E. C. Landahl; Frederic V. Hartemann; G.P. Le Sage; W. E. White; H. A. Baldis; C.V. Bennett; N.C. Luhmann; C. Ho
The phase noise and jitter characteristics of the laser and RF systems of a high-gradient X-band photoinjector have been measured experimentally. The laser oscillator is a self-mode-locked titanium:sapphire system operating at the 108th subharmonic of the RF gun. The X-band signal is produced from the laser by a phase-locked dielectric resonance oscillator and amplified by a pulsed TWT and klystron. A comparison between the klystron and TWT amplifier phase noise and the fields excited in the RF gun demonstrates the filtering effect of the high-Q structure, thus indicating that the RF gun can be used as a master oscillator and could be energized by either an RF oscillator, such as a magnetron, or a compact source, such as a cross-field amplifier. In particular, the RF gun can play the role of a pulsed RF clock to synchronize the photocathode laser system; direct drive of a synchronously mode-locked AlGaAs quantum well laser has been achieved using the X-band gun RF fields. This novel, gigahertz repetition rate, laser system is being developed to replace the more conventional femtosecond Ti:Al/sub 2/O/sub 3/ system. Some advantages include pumping this laser with a stabilized current source instead of a costly, low-efficiency pump laser. Finally, dark current measurements and initial photoelectron measurements are reported.