Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Frederick A. Matsen is active.

Publication


Featured researches published by Frederick A. Matsen.


PeerJ | 2014

PhyloSift: phylogenetic analysis of genomes and metagenomes

Aaron E. Darling; Guillaume Jospin; Eric Lowe; Frederick A. Matsen; Holly M. Bik; Jonathan A. Eisen

Like all organisms on the planet, environmental microbes are subject to the forces of molecular evolution. Metagenomic sequencing provides a means to access the DNA sequence of uncultured microbes. By combining DNA sequencing of microbial communities with evolutionary modeling and phylogenetic analysis we might obtain new insights into microbiology and also provide a basis for practical tools such as forensic pathogen detection. In this work we present an approach to leverage phylogenetic analysis of metagenomic sequence data to conduct several types of analysis. First, we present a method to conduct phylogeny-driven Bayesian hypothesis tests for the presence of an organism in a sample. Second, we present a means to compare community structure across a collection of many samples and develop direct associations between the abundance of certain organisms and sample metadata. Third, we apply new tools to analyze the phylogenetic diversity of microbial communities and again demonstrate how this can be associated to sample metadata. These analyses are implemented in an open source software pipeline called PhyloSift. As a pipeline, PhyloSift incorporates several other programs including LAST, HMMER, and pplacer to automate phylogenetic analysis of protein coding and RNA sequences in metagenomic datasets generated by modern sequencing platforms (e.g., Illumina, 454).


PLOS ONE | 2012

Bacterial Communities in Women with Bacterial Vaginosis: High Resolution Phylogenetic Analyses Reveal Relationships of Microbiota to Clinical Criteria

Sujatha Srinivasan; Noah G. Hoffman; Martin Morgan; Frederick A. Matsen; Tina L. Fiedler; Robert W. Hall; Frederick J. Ross; Connor O. McCoy; Roger E. Bumgarner; Jeanne M. Marrazzo; David N. Fredricks

Background Bacterial vaginosis (BV) is a common condition that is associated with numerous adverse health outcomes and is characterized by poorly understood changes in the vaginal microbiota. We sought to describe the composition and diversity of the vaginal bacterial biota in women with BV using deep sequencing of the 16S rRNA gene coupled with species-level taxonomic identification. We investigated the associations between the presence of individual bacterial species and clinical diagnostic characteristics of BV. Methodology/Principal Findings Broad-range 16S rRNA gene PCR and pyrosequencing were performed on vaginal swabs from 220 women with and without BV. BV was assessed by Amsel’s clinical criteria and confirmed by Gram stain. Taxonomic classification was performed using phylogenetic placement tools that assigned 99% of query sequence reads to the species level. Women with BV had heterogeneous vaginal bacterial communities that were usually not dominated by a single taxon. In the absence of BV, vaginal bacterial communities were dominated by either Lactobacillus crispatus or Lactobacillus iners. Leptotrichia amnionii and Eggerthella sp. were the only two BV-associated bacteria (BVABs) significantly associated with each of the four Amsel’s criteria. Co-occurrence analysis revealed the presence of several sub-groups of BVABs suggesting metabolic co-dependencies. Greater abundance of several BVABs was observed in Black women without BV. Conclusions/Significance The human vaginal bacterial biota is heterogeneous and marked by greater species richness and diversity in women with BV; no species is universally present. Different bacterial species have different associations with the four clinical criteria, which may account for discrepancies often observed between Amsel and Nugent (Gram stain) diagnostic criteria. Several BVABs exhibited race-dependent prevalence when analyzed in separate groups by BV status which may contribute to increased incidence of BV in Black women. Tools developed in this project can be used to study microbial ecology in diverse settings at high resolution.


Cell Host & Microbe | 2012

The Ability of Primate Lentiviruses to Degrade the Monocyte Restriction Factor SAMHD1 Preceded the Birth of the Viral Accessory Protein Vpx

Efrem S. Lim; Oliver I. Fregoso; Connor O. McCoy; Frederick A. Matsen; Harmit S. Malik; Michael Emerman

The human SAMHD1 protein potently restricts lentiviral infection in dendritic cells and monocyte/macrophages but is antagonized by the primate lentiviral protein Vpx, which targets SAMHD1 for degradation. However, only two of eight primate lentivirus lineages encode Vpx, whereas its paralog, Vpr, is conserved across all extant primate lentiviruses. We find that not only multiple Vpx but also some Vpr proteins are able to degrade SAMHD1, and such antagonism led to dramatic positive selection of SAMHD1 in the primate subfamily Cercopithecinae. Residues that have evolved under positive selection precisely determine sensitivity to Vpx/Vpr degradation and alter binding specificity. By overlaying these functional analyses on a phylogenetic framework of Vpr and Vpx evolution, we can decipher the chronology of acquisition of SAMHD1-degrading abilities in lentiviruses. We conclude that vpr neofunctionalized to degrade SAMHD1 even prior to the birth of a separate vpx gene, thereby initiating an evolutionary arms race with SAMHD1.


PLOS ONE | 2013

Rapid 16S rRNA next-generation sequencing of polymicrobial clinical samples for diagnosis of complex bacterial infections.

Stephen J. Salipante; Dhruba J. Sengupta; Christopher Rosenthal; Gina Costa; Jessica Spangler; Elizabeth H. Sims; Michael A. Jacobs; Samuel I. Miller; Daniel R. Hoogestraat; Brad T. Cookson; Connor O. McCoy; Frederick A. Matsen; Jay Shendure; Clarence Lee; Timothy T. Harkins; Noah G. Hoffman

Classifying individual bacterial species comprising complex, polymicrobial patient specimens remains a challenge for culture-based and molecular microbiology techniques in common clinical use. We therefore adapted practices from metagenomics research to rapidly catalog the bacterial composition of clinical specimens directly from patients, without need for prior culture. We have combined a semiconductor deep sequencing protocol that produces reads spanning 16S ribosomal RNA gene variable regions 1 and 2 (∼360 bp) with a de-noising pipeline that significantly improves the fraction of error-free sequences. The resulting sequences can be used to perform accurate genus- or species-level taxonomic assignment. We explore the microbial composition of challenging, heterogeneous clinical specimens by deep sequencing, culture-based strain typing, and Sanger sequencing of bulk PCR product. We report that deep sequencing can catalog bacterial species in mixed specimens from which usable data cannot be obtained by conventional clinical methods. Deep sequencing a collection of sputum samples from cystic fibrosis (CF) patients reveals well-described CF pathogens in specimens where they were not detected by standard clinical culture methods, especially for low-prevalence or fastidious bacteria. We also found that sputa submitted for CF diagnostic workup can be divided into a limited number of groups based on the phylogenetic composition of the airway microbiota, suggesting that metagenomic profiling may prove useful as a clinical diagnostic strategy in the future. The described method is sufficiently rapid (theoretically compatible with same-day turnaround times) and inexpensive for routine clinical use.


The Journal of Infectious Diseases | 2015

Risk of Drug Resistance Among Persons Acquiring HIV Within a Randomized Clinical Trial of Single- or Dual-Agent Preexposure Prophylaxis

Dara A. Lehman; Jared M. Baeten; Connor O. McCoy; Julie F. Weis; Dylan Peterson; Gerald Mbara; Deborah Donnell; Katherine K. Thomas; Craig W. Hendrix; Mark A. Marzinke; Lisa M. Frenkel; Patrick Ndase; Nelly Mugo; Connie Celum; Julie Overbaugh; Frederick A. Matsen

BACKGROUND Preexposure prophylaxis (PrEP) with emtricitabine plus tenofovir disoproxil fumarate (FTC/TDF) or TDF alone reduces the risk of human immunodeficiency virus (HIV) acquisition. Understanding the risk of antiretroviral resistance selected by PrEP during breakthrough infections is important because of the risk of treatment failure during subsequent antiretroviral use. METHODS Within the largest randomized trial of FTC/TDF versus TDF as PrEP, plasma samples were tested for HIV with resistance mutations associated with FTC (K65R and M184IV) and TDF (K65R and K70E), using 454 sequencing. RESULTS Of 121 HIV seroconverters, 25 received FTC/TDF, 38 received TDF, and 58 received placebo. Plasma drug levels in 26 individuals indicated PrEP use during or after HIV acquisition, of which 5 had virus with resistance mutations associated with their PrEP regimen. Among those with PrEP drug detected during infection, resistance was more frequent in the FTC/TDF arm (4 of 7 [57%]), compared with the TDF arm (1 of 19 [5.3%]; P = .01), owing to the FTC-associated mutation M184IV. Of these cases, 3 had unrecognized acute infection at PrEP randomization, and 2 were HIV negative at enrollment. CONCLUSIONS These results suggest that resistance selected by PrEP is rare but can occur both with PrEP initiation during acute seronegative HIV infection and in PrEP breakthrough infections and that FTC is associated with a greater frequency of resistance mutations than TDF.


PLOS ONE | 2013

Edge Principal Components and Squash Clustering: Using the Special Structure of Phylogenetic Placement Data for Sample Comparison

Frederick A. Matsen; Steven N. Evans

Principal components analysis (PCA) and hierarchical clustering are two of the most heavily used techniques for analyzing the differences between nucleic acid sequence samples taken from a given environment. They have led to many insights regarding the structure of microbial communities. We have developed two new complementary methods that leverage how this microbial community data sits on a phylogenetic tree. Edge principal components analysis enables the detection of important differences between samples that contain closely related taxa. Each principal component axis is a collection of signed weights on the edges of the phylogenetic tree, and these weights are easily visualized by a suitable thickening and coloring of the edges. Squash clustering outputs a (rooted) clustering tree in which each internal node corresponds to an appropriate “average” of the original samples at the leaves below the node. Moreover, the length of an edge is a suitably defined distance between the averaged samples associated with the two incident nodes, rather than the less interpretable average of distances produced by UPGMA, the most widely used hierarchical clustering method in this context. We present these methods and illustrate their use with data from the human microbiome.


PLOS ONE | 2015

Bacterial Composition of the Human Upper Gastrointestinal Tract Microbiome Is Dynamic and Associated with Genomic Instability in a Barrett’s Esophagus Cohort

Alevtina Gall; Jutta Fero; Connor O. McCoy; Brian C. Claywell; Carissa A. Sanchez; Patricia L. Blount; Xiaohong Li; Thomas L. Vaughan; Frederick A. Matsen; Brian J. Reid; Nina R. Salama

Background The incidence of esophageal adenocarcinoma (EAC) has increased nearly five-fold over the last four decades in the United States. Barrett’s esophagus, the replacement of the normal squamous epithelial lining with a mucus-secreting columnar epithelium, is the only known precursor to EAC. Like other parts of the gastrointestinal (GI) tract, the esophagus hosts a variety of bacteria and comparisons among published studies suggest bacterial communities in the stomach and esophagus differ. Chronic infection with Helicobacter pylori in the stomach has been inversely associated with development of EAC, but the mechanisms underlying this association remain unclear. Methodology The bacterial composition in the upper GI tract was characterized in a subset of participants (n=12) of the Seattle Barrett’s Esophagus Research cohort using broad-range 16S PCR and pyrosequencing of biopsy and brush samples collected from squamous esophagus, Barrett’s esophagus, stomach corpus and stomach antrum. Three of the individuals were sampled at two separate time points. Prevalence of H. pylori infection and subsequent development of aneuploidy (n=339) and EAC (n=433) was examined in a larger subset of this cohort. Results/Significance Within individuals, bacterial communities of the stomach and esophagus showed overlapping community membership. Despite closer proximity, the stomach antrum and corpus communities were less similar than the antrum and esophageal samples. Re-sampling of study participants revealed similar upper GI community membership in two of three cases. In this Barrett’s esophagus cohort, Streptococcus and Prevotella species dominate the upper GI and the ratio of these two species is associated with waist-to-hip ratio and hiatal hernia length, two known EAC risk factors in Barrett’s esophagus. H. pylori-positive individuals had a significantly decreased incidence of aneuploidy and a non-significant trend toward lower incidence of EAC.


Proceedings of the National Academy of Sciences of the United States of America | 2004

Win–stay, lose–shift in language learning from peers

Frederick A. Matsen; Martin A. Nowak

Traditional language learning theory explores an idealized interaction between a teacher and a learner. The teacher provides sentences from a language, while the learner has to infer the underlying grammar. Here, we study a new approach by considering a population of individuals that learn from each other. There is no designated teacher. We are inspired by the observation that children grow up to speak the language of their peers, not of their parents. Our goal is to characterize learning strategies that generate “linguistic coherence,” which means that most individuals use the same language. We model the resulting learning dynamics as a random walk of a population on a graph. Each vertex represents a candidate language. We find that a simple strategy using a certain aspiration level with the principle of win–stay, lose–shift does extremely well: stay with your current language, if at least three others use that language; otherwise, shift to an adjacent language on the graph. This strategy guarantees linguistic coherence on all nearly regular graphs, in the relevant limit where the number of candidate languages is much greater than the population size. Moreover, for many graphs, it is sufficient to have an aspiration level demanding only two other individuals to use the same language.


Methods in Ecology and Evolution | 2013

The mean and variance of phylogenetic diversity under rarefaction

David A. Nipperess; Frederick A. Matsen

Phylogenetic diversity (PD) depends on sampling depth, which complicates the comparison of PD between samples of different depth. One approach to dealing with differing sample depth for a given diversity statistic is to rarefy, which means to take a random subset of a given size of the original sample. Exact analytical formulae for the mean and variance of species richness under rarefaction have existed for some time but no such solution exists for PD.We have derived exact formulae for the mean and variance of PD under rarefaction. We confirm that these formulae are correct by comparing exact solution mean and variance to that calculated by repeated random (Monte Carlo) subsampling of a dataset of stem counts of woody shrubs of Toohey Forest, Queensland, Australia. We also demonstrate the application of the method using two examples: identifying hotspots of mammalian diversity in Australasian ecoregions, and characterising the human vaginal microbiome.There is a very high degree of correspondence between the analytical and random subsampling methods for calculating mean and variance of PD under rarefaction, although the Monte Carlo method requires a large number of random draws to converge on the exact solution for the variance.Rarefaction of mammalian PD of ecoregions in Australasia to a common standard of 25 species reveals very different rank orderings of ecoregions, indicating quite different hotspots of diversity than those obtained for unrarefied PD. The application of these methods to the vaginal microbiome shows that a classical score used to quantify bacterial vaginosis is correlated with the shape of the rarefaction curve.The analytical formulae for the mean and variance of PD under rarefaction are both exact and more efficient than repeated subsampling. Rarefaction of PD allows for many applications where comparisons of samples of different depth is required.


PLOS ONE | 2013

More Than Meets the Eye: Associations of Vaginal Bacteria with Gram Stain Morphotypes Using Molecular Phylogenetic Analysis

Sujatha Srinivasan; Martin Morgan; Congzhou Liu; Frederick A. Matsen; Noah G. Hoffman; Tina L. Fiedler; Kathy Agnew; Jeanne M. Marrazzo; David N. Fredricks

Bacterial vaginosis (BV) is a highly prevalent condition associated with adverse health outcomes. Gram stain analysis of vaginal fluid is the standard for confirming the diagnosis of BV, wherein abundances of key bacterial morphotypes are assessed. These Lactobacillus, Gardnerella, Bacteroides, and Mobiluncus morphotypes were originally linked to particular bacterial species through cultivation studies, but no studies have systematically investigated associations between uncultivated bacteria detected by molecular methods and Gram stain findings. In this study, 16S-rRNA PCR/pyrosequencing was used to examine associations between vaginal bacteria and bacterial morphotypes in 220 women with and without BV. Species-specific quantitative PCR (qPCR) and fluorescence in Situ hybridization (FISH) methods were used to document concentrations of two bacteria with curved rod morphologies: Mobiluncus and the fastidious BV-associated bacterium-1 (BVAB1). Rank abundance of vaginal bacteria in samples with evidence of curved gram-negative rods showed that BVAB1 was dominant (26.1%), while Mobiluncus was rare (0.2% of sequence reads). BVAB1 sequence reads were associated with Mobiluncus morphotypes (p<0.001). Among women with curved rods, mean concentration of BVAB1 DNA was 2 log units greater than Mobiluncus (p<0.001) using species-specific quantitative PCR. FISH analyses revealed that mean number of BVAB1 cells was 2 log units greater than Mobiluncus cells in women with highest Nugent score (p<0.001). Prevotella and Porphyromonas spp. were significantly associated with the “Bacteroides morphotype,” whereas Bacteroides species were rare. Gram-negative rods designated Mobiluncus morphotypes on Gram stain are more likely BVAB1. These findings provide a clearer picture of the bacteria associated with morphotypes on vaginal Gram stain.

Collaboration


Dive into the Frederick A. Matsen's collaboration.

Top Co-Authors

Avatar

Connor O. McCoy

Fred Hutchinson Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christopher T. Small

Fred Hutchinson Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Duncan K. Ralph

Fred Hutchinson Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Julie Overbaugh

Fred Hutchinson Cancer Research Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge