Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Frederick C. de Beer is active.

Publication


Featured researches published by Frederick C. de Beer.


Journal of Biological Chemistry | 1998

SR-BII, an Isoform of the Scavenger Receptor BI Containing an Alternate Cytoplasmic Tail, Mediates Lipid Transfer between High Density Lipoprotein and Cells

Nancy R. Webb; Patrice M. Connell; Gregory A. Graf; Eric J. Smart; Willem J. de Villiers; Frederick C. de Beer; Deneys R. van der Westhuyzen

The scavenger receptor class B, type I (SR-BI), binds high density lipoprotein (HDL) and mediates selective uptake of cholesteryl ester from HDL and HDL-dependent cholesterol efflux from cells. We recently identified a new mRNA variant that differs from the previously characterized form in that the encoded C-terminal cytoplasmic domain is almost completely different. In the present study, we demonstrate that the mRNAs for mouse SR-BI and SR-BII (previously termed SR-BI.2) are the alternatively spliced products of a single gene. The translation products predicted from human, bovine, mouse, hamster, and rat cDNAs exhibit a high degree of sequence similarity within the SR-BII C-terminal domain (62–67% identity when compared with the human sequence), suggesting that this variant is biologically important. SR-BII protein represents approximately 12% of the total immunodetectable SR-BI/II protein in mouse liver. Subcellular fractionation of transfected Chinese hamster ovary cells showed that SR-BII, like SR-BI, is enriched in caveolae, indicating that the altered cytoplasmic tail does not affect targeting of the receptor. SR-BII mediated both selective cellular uptake of cholesteryl ether from HDL as well as HDL-dependent cholesterol efflux from cells, although with approximately 4-fold lower efficiency than SR-BI. In vivo studies using adenoviral vectors showed that SR-BII was relatively less efficient than SR-BI in reducing plasma HDL cholesterol. These studies show that SR-BII, an HDL receptor isoform containing a distinctly different cytoplasmic tail, mediates selective lipid transfer between HDL and cells, but with a lower efficiency than the previously characterized variant.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2003

Macrophage-Expressed Group IIA Secretory Phospholipase A2 Increases Atherosclerotic Lesion Formation in LDL Receptor–Deficient Mice

Nancy R. Webb; Meredith Bostrom; Stephen J. Szilvassy; Deneys R. van der Westhuyzen; Alan Daugherty; Frederick C. de Beer

Objective—Transgenic mice expressing human group IIA secretory phospholipase A2 (group IIA sPLA2) spontaneously develop atherosclerotic lesions. The mechanism for this proatherogenic effect is likely multifactorial, because HDL-cholesterol is significantly lower and LDL/VLDL cholesterol is slightly higher in transgenic mice compared with nontransgenic littermates. In the present study, we show for the first time that elicited peritoneal macrophages from transgenic mice express human group IIA sPLA2. This study tested whether macrophage-expressed sPLA2 contributes to atherogenesis. Methods and Results—Bone marrow cells from either sPLA2 transgenic mice or control C57BL/6 mice were transplanted into LDL receptor–deficient mice. After hematopoietic engraftment, animals were fed a diet enriched with saturated fat and cholesterol for 12 weeks. Despite a lack of effect on serum lipoprotein concentrations, the presence of bone marrow–derived cells expressing human group IIA sPLA2 resulted in a significant increase in the extent of atherosclerosis in the aortic arch (12.8±1.4% versus 7.4±0.9%;P <0.005) and aortic sinus (0.3±0.03 mm2 versus 0.2±0.04 mm2;P <0.05). Conclusions—Group IIA sPLA2 can contribute to atherosclerotic lesion development through a mechanism that is independent of systemic lipoprotein metabolism.


Circulation | 2010

High-Density Lipoprotein Suppresses the Type I Interferon Response, a Family of Potent Antiviral Immunoregulators, in Macrophages Challenged With Lipopolysaccharide

Masashi Suzuki; David K. Pritchard; Lev Becker; Andrew N. Hoofnagle; Natsuko Tanimura; Theo K. Bammler; Richard P. Beyer; Roger E. Bumgarner; Tomas Vaisar; Maria C. de Beer; Frederick C. de Beer; Kensuke Miyake; John F. Oram; Jay W. Heinecke

Background— High-density lipoprotein (HDL) protects the artery wall by removing cholesterol from lipid-laden macrophages. However, recent evidence suggests that HDL might also inhibit atherogenesis by combating inflammation. Methods and Results— To identify potential antiinflammatory mechanisms, we challenged macrophages with lipopolysaccharide, an inflammatory microbial ligand for Toll-like receptor 4. HDL inhibited the expression of 30% (277 of 911) of the genes normally induced by lipopolysaccharide, microarray analysis revealed. One of its major targets was the type I interferon response pathway, a family of potent viral immunoregulators controlled by Toll-like receptor 4 and the TRAM/TRIF signaling pathway. Unexpectedly, the ability of HDL to inhibit gene expression was independent of macrophage cholesterol stores. Immunofluorescent studies suggested that HDL promoted TRAM translocation to intracellular compartments, which impaired subsequent signaling by Toll-like receptor 4 and TRIF. To examine the potential in vivo relevance of the pathway, we used mice deficient in apolipoprotein A-I, the major protein of HDL. After infection with Salmonella typhimurium, a Gram-negative bacterium that expresses lipopolysaccharide, apolipoprotein A-I–deficient mice had 6-fold higher plasma levels of interferon-&bgr;, a key regulator of the type I interferon response, than did wild-type mice. Conclusions— HDL inhibits a subset of lipopolysaccharide-stimulated macrophage genes that regulate the type I interferon response, and its action is independent of sterol metabolism. These findings raise the possibility that regulation of macrophage genes by HDL might link innate immunity and cardioprotection.


Obesity | 2010

A Murine Model of Obesity with Accelerated Atherosclerosis

Victoria L. King; Nicholas W. Hatch; Huei Wei Chan; Marcielle C. de Beer; Frederick C. de Beer; Lisa R. Tannock

The epidemic of obesity sweeping developed nations is accompanied by an increase in atherosclerotic cardiovascular diseases. Dyslipidemia, diabetes, hypertension, and obesity are risk factors for cardiovascular disease. However, delineating the mechanism of obesity‐accelerated atherosclerosis has been hampered by a paucity of animal models. Similar to humans, apolipoprotein E–deficient (apoE−/−) mice spontaneously develop atherosclerosis over their lifetime. To determine whether apoE−/− mice would develop obesity with accelerated atherosclerosis, we fed mice diets containing 10 (low fat (LF)) or 60 (high fat (HF)) kcal % from fat for 17 weeks. Mice fed the HF diet had a marked increase in body weight and atherosclerotic lesion formation compared to mice fed the LF diet. There were no significant differences between groups in serum total cholesterol, triglycerides, or leptin concentrations. Plasma concentrations of the acute‐phase reactant serum amyloid A (SAA) are elevated in both obesity and cardiovascular disease. Accordingly, plasma SAA concentrations were increased fourfold (P < 0.01) in mice fed the HF diet. SAA was associated with both pro‐ and antiatherogenic lipoproteins in mice fed the HF diet compared to those fed the LF diet, in which SAA was primarily associated with the antiatherogenic lipoprotein high‐density lipoprotein (HDL). Moreover, SAA was localized with apoB‐containing lipoproteins and biglycan in the vascular wall. Taken together, these data suggest male apoE‐deficient mice are a model of metabolic syndrome and that chronic low level inflammation associated with increased SAA concentrations may mediate atherosclerotic lesion formation.


American Journal of Pathology | 2008

Serum Amyloid A, but Not C-Reactive Protein, Stimulates Vascular Proteoglycan Synthesis in a Pro-Atherogenic Manner

Patricia G. Wilson; Joel C. Thompson; Nancy R. Webb; Frederick C. de Beer; Victoria L. King; Lisa R. Tannock

Inflammatory markers serum amyloid A (SAA) and C-reactive protein (CRP) are predictive of cardiac disease and are proposed to play causal roles in the development of atherosclerosis, in which the retention of lipoproteins by vascular wall proteoglycans is critical. The purpose of this study was to determine whether SAA and/or CRP alters vascular proteoglycan synthesis and lipoprotein retention in a pro-atherogenic manner. Vascular smooth muscle cells were stimulated with either SAA or CRP (1 to 100 mg/L) and proteoglycans were then isolated and characterized. SAA, but not CRP, increased proteoglycan sulfate incorporation by 50 to 100% in a dose-dependent manner (P < 0.0001), increased glycosaminoglycan chain length, and increased low-density lipoprotein (LDL) binding affinity (K(d), 29 microg/ml LDL versus 90 microg/ml LDL for SAA versus control proteoglycans; P < 0.005). Furthermore, SAA up-regulated biglycan via the induction of endogenous transforming growth factor (TGF)-beta. To determine whether SAA stimulated proteoglycan synthesis in vivo, ApoE(-/-) mice were injected with an adenovirus expressing human SAA-1, a null virus, or saline. Mice that received adenovirus expressing SAA had increased TGF-beta concentrations in plasma and increased aortic biglycan content compared with mice that received either null virus or saline. Thus, SAA alters vascular proteoglycans in a pro-atherogenic manner via the stimulation of TGF-beta and may play a causal role in the development of atherosclerosis.


BMC Gastroenterology | 2010

Intestinal Epithelial Serum Amyloid A Modulates Bacterial Growth In Vitro and Pro-Inflammatory Responses in Mouse Experimental Colitis

Erik Eckhardt; Jassir Witta; Jian Zhong; Razvan Arsenescu; Violeta Arsenescu; Yu Wang; Sarbani Ghoshal; Marcielle C. de Beer; Frederick C. de Beer; Willem J. de Villiers

BackgroundSerum Amyloid A (SAA) is a major acute phase protein of unknown function. SAA is mostly expressed in the liver, but also in other tissues including the intestinal epithelium. SAA reportedly has anti-bacterial effects, and because inflammatory bowel diseases (IBD) result from a breakdown in homeostatic interactions between intestinal epithelia and bacteria, we hypothesized that SAA is protective during experimental colitis.MethodsIntestinal SAA expression was measured in mouse and human samples. Dextran sodium sulfate (DSS) colitis was induced in SAA 1/2 double knockout (DKO) mice and in wildtype controls. Anti-bacterial effects of SAA1/2 were tested in intestinal epithelial cell lines transduced with adenoviral vectors encoding the CE/J SAA isoform or control vectors prior to exposure to live Escherichia coli.ResultsSignificant levels of SAA1/SAA2 RNA and SAA protein were detected by in situ hybridization and immunohistochemistry in mouse colonic epithelium. SAA3 expression was weaker, but similarly distributed. SAA1/2 RNA was present in the ileum and colon of conventional mice and in the colon of germfree mice. Expression of SAA3 was strongly regulated by bacterial lipopolysaccharides in cultured epithelial cell lines, whereas SAA1/2 expression was constitutive and not LPS inducible. Overexpression of SAA1/2 in cultured epithelial cell lines reduced the viability of co-cultured E. coli. This might partially explain the observed increase in susceptibility of DKO mice to DSS colitis. SAA1/2 expression was increased in colon samples obtained from Crohns Disease patients compared to controls.ConclusionsIntestinal epithelial SAA displays bactericidal properties in vitro and could play a protective role in experimental mouse colitis. Altered expression of SAA in intestinal biopsies from Crohns Disease patients suggests that SAA is involved in the disease process..


Arteriosclerosis, Thrombosis, and Vascular Biology | 2011

Serum Amyloid A Facilitates the Binding of High-Density Lipoprotein From Mice Injected With Lipopolysaccharide to Vascular Proteoglycans

Tsuyoshi Chiba; Mary Y. Chang; Shari Wang; Thomas N. Wight; Timothy S. McMillen; John F. Oram; Tomas Vaisar; Jay W. Heinecke; Frederick C. de Beer; Maria C. de Beer; Alan Chait

Objective—Levels of serum amyloid A (SAA), an acute-phase protein carried on high-density lipoprotein (HDL), increase in inflammatory states and are associated with increased risk of cardiovascular disease. HDL colocalizes with vascular proteoglycans in atherosclerotic lesions. However, its major apolipoprotein, apolipoprotein A-I, has no proteoglycan-binding domains. Therefore, we investigated whether SAA, which has proteoglycan-binding domains, plays a role in HDL retention by proteoglycans. Methods and Results—HDL from control mice and mice deficient in both SAA1.1 and SAA2.1 (SAA knockout mice) injected with bacterial lipopolysaccharide (LPS) was studied. SAA mRNA expression in the liver and plasma levels of SAA increased dramatically in C57BL/6 mice after LPS administration, although HDL cholesterol did not change. Fast protein liquid chromatography analysis showed most of the SAA to be in HDL. Mass spectrometric analysis indicated that HDL from LPS-injected control mice had high levels of SAA1.1/2.1 and reduced levels of apolipoprotein A-I. HDL from LPS-injected control mice demonstrated high-affinity binding to biglycan relative to normal mouse HDL. In contrast, HDL from LPS-injected SAA knockout mice showed very little binding to biglycan, consistent with SAA facilitating the binding of HDL to vascular proteoglycans. Conclusion—SAA enrichment of HDL under inflammatory conditions plays an important role in the binding of HDL to vascular proteoglycans.


Journal of Lipid Research | 2010

Impact of serum amyloid A on high density lipoprotein composition and levels

Maria C. de Beer; Nancy R. Webb; Joanne M. Wroblewski; Victoria P. Noffsinger; Debra L. Rateri; Ailing Ji; Deneys R. van der Westhuyzen; Frederick C. de Beer

Serum amyloid A (SAA) is an acute-phase protein mainly associated with HDL. To study the role of SAA in mediating changes in HDL composition and metabolism during inflammation, we generated mice in which the two major acute-phase SAA isoforms, SAA1.1 and SAA2.1, were deleted [SAA knockout (SAAKO) mice], and induced an acute phase to compare lipid and apolipoprotein parameters between wild-type (WT) and SAAKO mice. Our data indicate that SAA does not affect apolipoprotein A-I (apoA-I) levels or clearance under steady-state conditions. HDL and plasma triglyceride levels following lipopolysaccharide administration, as well as the decline in liver expression of apoA-I and apoA-II, did not differ between both groups of mice. The expected size increase of WT acute-phase HDL was surprisingly also seen in SAAKO acute-phase HDL despite the absence of SAA. HDLs from both mice showed increased phospholipid and unesterified cholesterol content during the acute phase. We therefore conclude that in the mouse, SAA does not impact HDL levels, apoA-I clearance, or HDL size during the acute phase and that the increased size of acute-phase HDL in mice is associated with an increased content of surface lipids, particularly phospholipids, and not surface proteins. These data need to be transferred to humans with caution due to differences in apoA-I structure and remodeling functions.


Annals of Internal Medicine | 1985

Serum Amyloid A Protein in Familial Mediterranean Fever

Aaron Knecht; Frederick C. de Beer; Mordechai Pras

Excerpt Amyloid a protein is the subunit of amyloid fibrils that occurs in the forms of amyloidosis commonest in humans and ubiquitous in animals (1, 2). Its unique nature prompted a search for its...


Arteriosclerosis, Thrombosis, and Vascular Biology | 2004

Low-Density Lipoprotein From Apolipoprotein E-Deficient Mice Induces Macrophage Lipid Accumulation in a CD36 and Scavenger Receptor Class A-Dependent Manner

Zhenze Zhao; Maria C. de Beer; Lei Cai; Reto Asmis; Frederick C. de Beer; Willem J. de Villiers; Deneys R. van der Westhuyzen

Objective— To investigate the potential of circulating low-density lipoprotein (LDL), isolated from apolipoprotein E (apoE)–deficient mice (E−/−LDL) and from LDL receptor-deficient mice (Lr−/−LDL), to induce foam cell formation. Methods and Results— Binding studies using COS-7 cells overexpressing CD36, J774 cells, and mouse peritoneal macrophages (MPMs) unexpectedly showed for the first time that E−/−LDL, which is enriched in cholesterol, is a high-affinity ligand for CD36 and exhibited greater macrophage uptake than Lr−/−LDL or normal LDL. Minimal copper-mediated oxidization of Lr−/−LDL or C57LDL in vitro resulted in increased ligand internalization, although cell uptake of these oxidized LDLs was lower than that of E−/−LDL, even at oxidation levels similar to that found in E−/−LDL. Treatment of MPMs with E−/−LDL and Lr−/−LDL (to a 2- to 3-fold lesser extent), but not normal LDL, resulted in significant cellular cholesteryl ester accumulation and foam cell formation. Experiments using MPMs lacking CD36, scavenger receptor class A (SR-A), or both, indicated a major contribution of CD36 (≈50%), and to a lesser extent, SR-A (24% to 30%), to E−/−LDL uptake. Conclusions— Because of its increased state of oxidation and high cholesterol content, LDL in apoE-deficient mice acts in a proatherogenic manner, without requiring further modification in the vascular wall, to induce foam cell formation through its uptake by scavenger receptors.

Collaboration


Dive into the Frederick C. de Beer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ailing Ji

University of Kentucky

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark S. Kindy

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge