Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Frederick C. Eichmiller is active.

Publication


Featured researches published by Frederick C. Eichmiller.


Journal of Biomedical Materials Research | 2001

Strong and macroporous calcium phosphate cement: Effects of porosity and fiber reinforcement on mechanical properties†‡

Hockin H.K. Xu; Janet B. Quinn; Shozo Takagi; Laurence C. Chow; Frederick C. Eichmiller

Because of its excellent osteoconductivity and bone-replacement capability, self-setting calcium phosphate cement (CPC) has been used in a number of clinical procedures. For more rapid resorption and concomitant osseointegration, methods were desired to build macropores into CPC; however, this decreased its mechanical properties. The aims of this study, therefore, were to use fibers to strengthen macroporous CPC and to investigate the effects of the pore volume fraction on its mechanical properties. Water-soluble mannitol crystals were incorporated into CPC paste; the set CPC was then immersed in water to dissolve mannitol, producing macropores. Mannitol/(mannitol + CPC powder) mass fractions of 0, 10, 20, 30, and 40% were used. An aramid fiber volume fraction of 6% was incorporated into the CPC-mannitol specimens, which were set in 3 mm x 4 mm x 25 mm molds and then fractured in three-point flexure to measure the strength, work of fracture, and modulus. The dissolution of mannitol created well-formed macropores, with CPC at 40% mannitol having a total porosity of a 70.8% volume fraction. Increasing the mannitol content significantly decreased the properties of CPC without fibers (analysis of variance; p < 0.001). The strength (mean +/- standard deviation; n = 6) of CPC at 0% mannitol was 15.0 +/- 1.8 MPa; at 40% mannitol, it decreased to 1.4 +/- 0.4 MPa. Fiber reinforcement improved the properties, with the strength increasing threefold at 0% mannitol, sevenfold at 30% mannitol, and nearly fourfold at 40% mannitol. The work of fracture increased by 2 orders of magnitude, but the modulus was not changed as a result of fiber reinforcement. A scanning electron microscopy examination of specimens indicated crack deflection and bridging by fibers, matrix multiple cracking, and frictional pullout of fibers as the reinforcement mechanisms. Macroporous CPCs were substantially strengthened and toughened via fiber reinforcement. This may help extend the use of CPCs with macropores for bony ingrowth to the repair of larger defects in stress-bearing locations.


Journal of Biomedical Materials Research | 2000

Reinforcement of a self‐setting calcium phosphate cement with different fibers

Hockin H.K. Xu; Frederick C. Eichmiller; Anthony A. Giuseppetti

A water-based calcium phosphate cement (CPC) has been used in a number of medical and dental procedures due to its excellent osteoconductivity and bone replacement capability. However, the low tensile strength of CPC prohibits its use in many unsupported defects and stress-bearing locations. Little investigation has been carried out on the fiber reinforcement of CPC. The aims of the present study, therefore, were to examine whether fibers would strengthen CPC, and to investigate the effects of fiber type, fiber length, and volume fraction. Four different fibers were used: aramid, carbon, E-glass, and polyglactin. Fiber length ranged from 3-200 mm, and fiber volume fraction ranged from 1.9-9.5%. The fibers were mixed with CPC paste and placed into molds of 3 x 4 x 25 mm. A flexural test was used to fracture the set specimens and to measure the ultimate strength, work-of-fracture, and elastic modulus. Scanning electron microscopy was used to examine specimen fracture surfaces. Fiber type had significant effects on composite properties. The composite ultimate strength in MPa (mean +/- SD; n = 6) was (62+/-16) for aramid, (59+/-11) for carbon, (29+/-8) for E-glass, and (24+/-4) for polyglactin, with 5.7% volume fraction and 75 mm fiber length. In comparison, the strength of unreinforced CPC was (13+/-3). Fiber length also played an important role. For composites containing 5.7% aramid fibers, the ultimate strength was (24+/-3) for 3 mm fibers, (36+/-13) for 8 mm fibers, (48 +/-14) for 25 mm fibers, and (62+/-16) for 75 mm fibers. At 25 mm fiber length, the ultimate strength of CPC composite was found to be linearly proportional to fiber strength. In conclusion, a self-setting calcium phosphate cement was substantially strengthened via fiber reinforcement. Fiber length, fiber volume fraction, and fiber strength were found to be key microstructural parameters that controlled the mechanical properties of CPC composites.


Journal of Dental Research | 1999

Ceramic Whisker Reinforcement of Dental Resin Composites

Hockin H.K. Xu; T A. Martin; Joseph M. Antonucci; Frederick C. Eichmiller

Resin composites currently available are not suitable for use as large stress-bearing posterior restorations involving cusps due to their tendencies toward excessive fracture and wear. The glass fillers in composites provide only limited reinforcement because of the brittleness and low strength of glass. The aim of the present study was to reinforce dental resins with ceramic single-crystalline whiskers of elongated shapes that possess extremely high strength. A novel method was developed that consisted of fusing silicate glass particles onto the surfaces of individual whiskers for a two-fold benefit: (1) to facilitate silanization regardless of whisker composition; and (2) to enhance whisker retention in the matrix by providing rougher whisker surfaces. Silicon nitride whiskers, with an average diameter of 0.4 μm and length of 5 μm, were coated by the fusion of silica particles 0.04 μm in size to the whisker surface at temperatures ranging from 650°C to 1000°C. The coated whiskers were silanized and manually blended with resins by spatulation. Flexural, fracture toughness, and indentation tests were carried out for evaluation of the properties of the whisker-reinforced composites in comparison with conventional composites. A two-fold increase in strength and toughness was achieved in the whisker-reinforced composite, together with a substantially enhanced resistance to contact damage and microcracking. The highest flexural strength (195 ± 8 MPa) and fracture toughness (2.1 ± 0.3 MPa · m1/2 ) occurred in a composite reinforced with a whisker-silica mixture at whisker:silica mass ratio of 2:1 fused at 800°C. To conclude, the strength, toughness, and contact damage resistance of dental resin composites can be substantially improved by reinforcement with fillers of ceramic whiskers fused with silica glass particles.


Dental Materials | 2003

Effects of different whiskers on the reinforcement of dental resin composites.

Hockin H.K. Xu; Janet B. Quinn; Douglas T. Smith; Anthony A. Giuseppetti; Frederick C. Eichmiller

OBJECTIVE Whiskers were recently used to reinforce dental composites to extend their use to large stress-bearing restorations. The aim of this study was to investigate the effects of different types of whiskers on composite properties. METHODS Silicon nitride and silicon carbide whiskers were each mixed with silica particles at whisker/silica mass ratios of 0:1, 1:5, 1:2, 1:1, 2:1, 5:1, and 1:0, and thermally treated. The composite was heat-cured at 140 degrees C. Strength and fracture toughness were measured in flexure, while elastic modulus and hardness were measured with nano-indentation. RESULTS Both whisker type and whisker/silica ratio had significant effects on composite properties (two-way ANOVA; p<0.001). Silicon nitride whiskers increased the composite strength and toughness more than did silicon carbide. Silicon carbide whiskers increased the modulus and hardness more than silicon nitride did. The silicon nitride whisker composite reached a strength (mean+/-SD; n=6) of 246+/-33 MPa at whisker/silica of 1:1, while the silicon carbide whisker composite reached 210+/-14 MPa at 5:1. Both were significantly higher than 114+/-18 MPa of a prosthetic control and 109+/-23 MPa of an inlay/onlay control (Tukeys multiple comparison test; family confidence coefficient=0.95). Fracture toughness and work-of-fracture were also increased by a factor of two. Higher whisker/silica ratio reduced the composite brittleness to 1/3 that of the inlay/onlay control. SIGNIFICANCE Whisker type and whisker/silica ratio are key microstructural parameters that determine the composite properties. Reinforcement with silica-fused whiskers results in novel dental composites that possess substantially higher strength and fracture toughness, and lower brittleness than the non-whisker control composites.


Dental Materials | 2003

Properties of elastomeric calcium phosphate cement–chitosan composites

Shozo Takagi; Laurence C. Chow; Satoshi Hirayama; Frederick C. Eichmiller

OBJECTIVE Self-hardening calcium phosphate cements (CPC) have been shown to be efficacious in a number of clinical applications. For some applications it is desirable to have CPC in a non-rigid resorbable elastomeric matrix. In the present study, chitosan was evaluated as the matrix for preparing CPC-chitosan composites. METHODS Cement specimens were prepared by mixing CPC powder (an equimolar mixture of tetracalcium phosphate and dicalcium phosphate anhydrous) with a chitosan solution at a powder/liquid ratio of 2-2.5. The setting time was measured by a Gilmore needle method. A standard three-point flexural test was used to fracture the specimens at a crosshead speed of 0.5 mm/min. Powder X-ray diffraction analysis was used to determine the conversion of the CPC to hydroxyapatite. RESULTS The CPC-chitosan composites were more stable in water than conventional CPC. They did not disintegrate even when placed in water immediately after mixing. The CPC-chitosan paste hardened within 10 min in all cases. The 1d mean flexural modulus (GPa) for the control CPC was 5.3 (0.3) (mean (standard deviation); n=5), and that for CPC-chitosan composites were between 2.7 (0.3) and 4.7 (0.3). The 1d mean flexural strength (MPa) for the control was 16.6 (1.9), and that for the CPC-chitosan ranged from 4.5 (0.5) and 12.0 (1.0) (n=5). Chitosan did not interfere the conversion of CPC components to hydroxyapatite. SIGNIFICANCE This study demonstrates that CPC-chitosan composites are stable in a wet environment and have acceptable mechanical strengths for clinical applications.


Biomaterials | 2002

Dental resin composites containing silica-fused whiskers—effects of whisker-to-silica ratio on fracture toughness and indentation properties

Hockin H.K. Xu; Janet B. Quinn; Douglas T. Smith; Joseph M. Antonucci; Gary E. Schumacher; Frederick C. Eichmiller

Dental resin composites need to be strengthened in order to improve their performance in large stress-bearing applications such as crowns and multiple-unit restorations. Recently, silica-fused ceramic whiskers were used to reinforce dental composites, and the whisker-to-silica ratio was found to be a key microstructural parameter that determined the composite strength. The aim of this study was to further investigate the effects of whisker-to-silica ratio on the fracture toughness, elastic modulus, hardness and brittleness of the composite. Silica particles and silicon carbide whiskers were mixed at whisker:silica mass ratios of 0:1, 1:5. 1:2, 1:1, 2:1, 5:1, and 1:0. Each mixture was thermally fused, silanized and combined with a dental resin at a filler mass percentage of 60%. Fracture toughness was measured with a single-edge notched beam method. Elastic modulus and hardness were measured with a nano-indentation system. Whisker:silica ratio had significant effects on composite properties. The composite toughness (mean+/-SD; n = 9) at whisker:silica = 2:1 was (2.47+/-0.28) MPa m(1/2), significantly higher than (1.02+/-0.23) at whisker:silica = 0:1, (1.13+/-0.19) of a prosthetic composite control, and (0.95+/-0.11) of an inlay/onlay composite control (Tukeys at family confidence coefficient = 0.95). Elastic modulus increased monotonically and hardness plateaued with increasing the whisker:silica ratio. Increasing the whisker:silica ratio also decreased the composite brittleness, which became about 1/3 of that of the inlay:onlay control. Electron microscopy revealed relatively flat fracture surfaces for the controls, but much rougher ones for the whisker composites, with fracture steps and whisker pullout contributing to toughness. The whiskers appeared to be well-bonded with the matrix, probably due to the fused silica producing rough whisker surfaces. Reinforcement with silica-fused whiskers resulted in novel dental composites that possessed fracture toughness two times higher than, and brittleness less than half of current dental composites.


Dental Materials | 2003

Continuous-fiber preform reinforcement of dental resin composite restorations

Hockin H.K. Xu; Gary E. Schumacher; Frederick C. Eichmiller; R C. Peterson; Joseph M. Antonucci; H.J Mueller

OBJECTIVES Direct-filling resin composites are used in relatively small restorations and are not recommended for large restorations with severe occlusal-stresses. The aim of this study was to reinforce composites with fiber preforms, and to investigate the effects of layer thickness and configurations on composite properties. It was hypothesized that fiber preforms would significantly increase the composites flexural strength, work-of-fracture (toughness) and elastic modulus. METHODS Glass fibers were silanized, impregnated with a resin, cured, and cut to form inserts for tooth cavity restorations. Also fabricated were three groups of specimens of 2mm x 2mm x 25 mm: a fiber preform rod in the center of a hybrid composite; a thin fiber layer on the tensile side of the specimens; and a thin fiber layer sandwiched in between layers of a hybrid composite. These specimens were tested in three-point flexure to measure strength, work-of-fracture and modulus. Optical and scanning electron microscopy were used to examine the restorations and the fiber distributions. RESULTS Microscopic examinations of insert-filled tooth cavities showed that the fibers were relatively uniform in distribution within the preform, and the inserts were well bonded with the surrounding hybrid composite. Specimens consisting of a fiber preform rod in the center of a hybrid composite had a flexural strength (mean (SD); n=6) of 313 (19)MPa, significantly higher than 120 (16)MPa of the hybrid composite without fibers (Tukeys at family confidence of 0.95). The work-of-fracture was increased by nearly seven times, and the modulus was doubled, due to fiber preform reinforcement. Similar improvements were obtained for the other two groups of specimens. SIGNIFICANCE Substantial improvements in flexural strength, toughness and stiffness were achieved for dental resin composites reinforced with fiber preforms. The method of embedding a fiber preform insert imparts superior reinforcement to restorations and should improve the performance of direct-filling resin composites in large restorations with high occlusal-loads.


Dental Materials | 2002

Stability of bisphenol A, triethylene-glycol dimethacrylate, and bisphenol A dimethacrylate in whole saliva

Jane C. Atkinson; Francis Diamond; Frederick C. Eichmiller; Robert H. Selwitz; Gordon Jones

OBJECTIVES This study investigated the stability of compounds of dental sealant materials in a salivary matrix. METHODS Various amounts of bisphenol A (BPA), bisphenol A dimethacrylate (BIS-DMA) or triethylene-glycol dimethacrylate (TEGDMA) were added to whole salivary samples, and stored at -70 degrees C or -20 degrees C for up to 4 months. In other experiments, four separate whole salivary or water samples with BIS-DMA (200 ng/ml) were incubated for 0, 1, 2, 4 or 24h at 37 degrees C. Levels of analytes were determined by capillary gas chromatography/mass spectrophotometry (GC/MS) and high-performance liquid chromatography (HPLC). RESULTS BPA was stable under all tested conditions. Samples originally containing BIS-DMA had high levels of BPA and almost no BIS-DMA after 4 months at -20 degrees C. Salivary samples incubated at 37 degrees C originally containing only BIS-DMA (200 ng/ml) demonstrated rapid decreases of BIS-DMA and increases of BPA. By 24h, the mean BIS-DMA concentration fell to 21.8 (25) ng/ml, while BPA increased to 100 (48) ng/ml. Only slight decreases in BIS-DMA and no BPA were present in the water samples incubated at 37 degrees C. BPA, BIS-DMA, and TEGDMA were stable if salivary samples were stored at -70 degrees C. Acidification of salivary samples prevented the breakdown of BIS-DMA. SIGNIFICANCE BIS-DMA is converted rapidly to BPA in the presence of whole saliva. This could account for the findings of BPA in clinical samples collected after the placement of certain sealant products. Decreasing salivary pH and temperature can slow this process and this method should be used for clinical studies of salivary BPA leached from restorative materials.


Head & Neck Oncology | 2012

The cost burden of oral, oral pharyngeal, and salivary gland cancers in three groups: commercial insurance, medicare, and medicaid

Jed J. Jacobson; Joel B. Epstein; Frederick C. Eichmiller; Teresa B. Gibson; Ginger Smith Carls; Emily Vogtmann; Shaohung Wang; Barbara A. Murphy

BackgroundHead and neck cancers are of particular interest to health care providers, their patients, and those paying for health care services, because they have a high morbidity, they are extremely expensive to treat, and of the survivors only 48% return to work. Consequently the economic burden of oral cavity, oral pharyngeal, and salivary gland cancer (OC/OP/SG) must be understood. The cost of these cancers in the U.S. has not been investigated.MethodsA retrospective analysis of administrative claims data for 6,812 OC/OP/SG cancer patients was undertaken. Total annual health care spending for OC/OP/SG cancer patients was compared to similar patients without OC/OP/SG cancer using propensity score matching for enrollees in commercial insurance, Medicare, and Medicaid. Indirect costs, as measured by short term disability days were compared for employed patients.ResultsTotal annual health care spending for OC/OP/SG patients during the year after the index diagnosis was


Journal of Materials Science: Materials in Medicine | 2001

Effects of fiber length and volume fraction on the reinforcement of calcium phosphate cement.

Hockin D. Xu; Frederick C. Eichmiller; P R. Barndt

79,151 for the Commercial population. Health care costs were higher for OC/OP/SG cancer patients with Commercial Insurance (

Collaboration


Dive into the Frederick C. Eichmiller's collaboration.

Top Co-Authors

Avatar

Gary E. Schumacher

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joseph M. Antonucci

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

Anthony A. Giuseppetti

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

Janet B. Quinn

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

Douglas T. Smith

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sabine H. Dickens

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

Hockin D. Xu

American Dental Association

View shared research outputs
Top Co-Authors

Avatar

Peter V. Hauschka

Boston Children's Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge